
bulk extractor

USER MANUAL

Quickstart Guide Included
July 8, 2014

Authored by:
Jessica R. Bradley
Simson L. Garfinkel

One Page Quickstart for Linux & Mac Users

This page provides a very brief introduction to downloading, installing and running
bulk_extractor .

1. If you do not already have one, obtain a disk image on which to run bulk_extractor .
Sample images can be downloaded from http://digitalcorpora.org/corpora/
disk-images. Suggestions include nps-2009-domexusers and
nps-2009-ubnist1.gen3.

2. Download the latest version of bulk_extractor . It can be obtained from http://
digitalcorpora.org/downloads/bulk_extractor/. The file is called bulk_extractor-x.y.z.tar.gz
where x.y.z is the latest version.

3. Un-tar and un-zip the file. In the newly created bulk_extractor-x.y directory, run
the following commands:

� ./configure
� make
� sudo make install

[Refer to Subsubsection 3.1.1 Installing on Linux or Mac. Note, for full
functionality, some users may need to first download and install dependent library
files. Instructions are outlined in the referenced section.]

4. To run bulk_extractor from the command line, type the following command:

� bulk_extractor -o output mydisk.raw

In the above command, output is the directory that will be created to store
bulk_extractor results. It can not already exist. The input mydisk.raw is the
disk image to be processed. [See Subsection 3.2 Run bulk_extractor from
the Command Line]

5. To run bulk_extractor from the Bulk Extractor Viewer, navigate to the direc-
tory called /java_gui in the bulk_extractor folder and run the following command:

� ./BEViewer

In the Bulk Extractor Viewer, click on the Gear/down arrow icon as depicted
below.

A window will pop up and the first two input boxes allow you to select an Image
File and specify an Output Feature Directory to create. Enter both of those and
then select the button at the bottom of the window titled "Start bulk_extractor"
to run bulk_extractor . [See Subsection 3.3 Run bulk_extractor from Bulk
Extractor Viewer]

ii

http://digitalcorpora.org/corpora/disk-images
http://digitalcorpora.org/corpora/disk-images
http://digitalcorpora.org/downloads/bulk_extractor/
http://digitalcorpora.org/downloads/bulk_extractor/

6. Whether bulk_extractor was run from the command line or the Bulk Extractor
Viewer tool, after the run the resulting output files will be contained in the
specified output directory. Open that directory and verify files have been created.
There should be 15-25 files. Some will be empty and others will be populated with
data.

7. Users can join the google email users group for more information and help with any
issues encountered. Email bulk_extractor-users+subscribe@googlegroups.com
with a blank message to join.

iii

One Page Quickstart for Windows Users

This page provides a very brief introduction to downloading, installing and running
bulk_extractor .

1. If you do not already have one, obtain a disk image on which to run bulk_extractor .
Sample images can be downloaded from http://digitalcorpora.org/corpora/
disk-images. Suggestions include nps-2009-domexusers and
nps-2009-ubnist1.gen3.

2. Download the latest version of the bulk_extractor Windows installer. It can be
obtained from http://digitalcorpora.org/downloads/bulk_extractor. The
file to download is called bulk_extractor-x.y.z-windowsinstaller.exe where
x.y.z is the latest version number. Run the installer file. This will automatically
install bulk_extractor on your machine. The automatic installation includes the
complete bulk_extractor system as well as the Bulk Extractor Viewer tool. [See
Subsubsection 3.1.2 Installing on Windows]

3. To run bulk_extractor from the command line, type the following command:

� bulk_extractor -o output mydisk.raw

In the above command, output is the directory that will be created to store
bulk_extractor results. It can not already exist. The input mydisk.raw is the
disk image to be processed. [See Subsection 3.2 Run bulk_extractor from
the Command Line]

4. To run bulk_extractor from the Bulk Extractor Viewer, run the program Bulk
Extractor X.Y from the Start Menu.

In the Bulk Extractor Viewer, click on the Gear/down arrow icon as depicted

below.

A window will pop up and the first two input boxes allow you to select an Image
File and specify an Output Feature Directory to create. Enter both of those and
then select the button at the bottom of the window titled "Start bulk_extractor"
to run bulk_extractor . [See Subsection 3.3 Run bulk_extractor from Bulk
Extractor Viewer]

5. Whether bulk_extractor was run from the command line or the Bulk Extractor
Viewer tool, after the run the resulting output files will be contained in the
specified output directory. Open that directory and verify files have been created.
There should be 15-25 files. Some will be empty and others will be populated with
data.

6. Users can join the google email users group for more information and help with any
issues encountered. Email bulk_extractor-users+subscribe@googlegroups.com
with a blank message to join.

iv

http://digitalcorpora.org/corpora/disk-images
http://digitalcorpora.org/corpora/disk-images
http://digitalcorpora.org/downloads/bulk_extractor

Contents

1 Introduction 1
1.1 Overview of bulk_extractor . 1

1.1.1 A bulk_extractor Success Story 2
1.2 Purpose of this Manual . 3
1.3 Conventions Used in this Manual . 3

2 How bulk_extractor Works 3

3 Running bulk_extractor 6
3.1 Installation Guide . 6

3.1.1 Installing on Linux or Mac . 6
3.1.2 Installing on Windows . 8

3.2 Run bulk_extractor from the Command Line 10
3.3 Run bulk_extractor from Bulk Extractor Viewer 12
3.4 Run bulk_extractor from Bulk Extractor Viewer 12

4 Processing Data 17
4.1 Types of Input Data . 17
4.2 Scanners . 21
4.3 Carving . 23
4.4 Suppressing False Positives . 24
4.5 Using an Alert List . 26
4.6 The Importance of Compressed Data Processing 26

5 Use Cases for bulk_extractor 27
5.1 Malware Investigations . 27
5.2 Cyber Investigations . 28
5.3 Identity Investigations . 29
5.4 Password Cracking . 32
5.5 Analyzing Imagery Information . 32
5.6 Using bulk_extractor in a Highly Specialized Environment 32

6 Tuning bulk_extractor 33

7 Post Processing Capabilities 33
7.1 bulk_diff.py: Difference Between Runs 34
7.2 identify_filenames.py: Identify File Origin of Features 34

8 Worked Examples 34
8.1 Encoding . 35

9 2009-M57 Patents Scenario 35
9.1 Run bulk_extractor with the Data . 35
9.2 Digital Media Triage . 38
9.3 Analyzing Imagery . 43
9.4 Password Cracking . 44
9.5 Post Processing . 46

v

10 NPS DOMEX Users Image 47
10.1 Malware Investigations . 49
10.2 Cyber Investigations . 51

11 Troubleshooting 53

12 Related Reading 54

Appendices 56

A Output of bulk_extractor Help Command 56

vi

1 Introduction

1.1 Overview of bulk_extractor

bulk_extractor is a program that extracts features such as email addresses, credit card
numbers, URLs, and other types of information from digital evidence files. It is a useful
forensic investigation tool for many tasks such as malware and intrusion investigations,
identity investigations and cyber investigations, as well as analyzing imagery and pass-
word cracking. The program provides several unusual capabilities including:

• It finds email addresses, URLs and credit card numbers that other tools miss
because it can process compressed data (like ZIP, PDF and GZIP files) and in-
complete or partially corrupted data. It can carve JPEGs, office documents and
other kinds of files out of fragments of compressed data. It will detect and carve
encrypted RAR files.

• It builds word lists based on all of the words found within the data, even those in
compressed files that are in unallocated space. Those word lists can be useful for
password cracking.

• It is multi-threaded; running bulk_extractor on a computer with twice the number
of cores typically makes it complete a run in half the time.

• It creates histograms showing the most common email addresses, URLs, domains,
search terms and other kinds of information on the drive.

bulk_extractor operates on disk images, files or a directory of files and extracts use-
ful information without parsing the file system or file system structures. The input is
split into pages and processed by one or more scanners. The results are stored in fea-
ture files that can be easily inspected, parsed, or processed with other automated tools.
bulk_extractor also creates histograms of features that it finds. This is useful because
features such as email addresses and internet search terms that are more common tend
to be important.

In addition to the capabilities described above, bulk_extractor also includes:

• A graphical user interface, Bulk Extractor Viewer, for browsing features stored
in feature files and for launching bulk_extractor scans

• A small number of python programs for performing additional analysis on feature
files

bulk_extractor 1.4 detects and optimistically decompresses data in ZIP, GZIP, RAR,
and Microsoft’s Hibernation files. This has proven useful, for example, in recovering
email addresses from fragments of compressed files found in unallocated space.

bulk_extractor contains a simple but effective mechanism for protecting against decom-
pression bombs. It also has capabilities specifically designed for Windows and malware
analysis including decoders for the Windows PE, Linux ELF, VCARD, Base16, Base64
and Windows directory formats.

bulk_extractor gets its speed through the use of compiled search expressions and multi-
threading. The search expressions are written as pre-compiled regular expressions, es-
sentially allowing bulk_extractor to perform searches on disparate terms in parallel.

1

Threading is accomplished through the use of an analysis thread pool. After the fea-
tures have been extracted, bulk_extractor builds a histogram of email addresses, Google
search terms, and other extracted features. Stop lists can also be used to remove features
not relevant to a case.

bulk_extractor is distinguished from other forensic tools by its speed and thoroughness.
Because it ignores file system structure, bulk_extractor can process different parts of the
disk in parallel. This means that an 8-core machine will process a disk image roughly
8 times faster than a 1-core machine. bulk_extractor is also thorough. It automatically
detects, decompresses, and recursively re-processes data that has been compressed with
a variety of algorithms. Our testing has shown there is a significant amount of com-
pressed data in the unallocated regions of file systems missed by most forensics tools
that are commonly in use today[?]. Another advantage of ignoring file systems is that
bulk_extractor can be used to process any kind of digital media. The program has been
used to process hard drives, SSDs, optical media, camera cards, cell phones, network
packet dumps, and other kinds of digital information.

Between 2005 and 2008, the bulk_extractor team interviewed law enforcement regarding
their use of forensic tools. Law enforcement officers wanted a highly automated tool for
finding email addresses and credit card numbers (including track 2 information), phone
numbers, GPS coordinates and EXIF information from JPEGs, search terms (extracted
from URLs), and all words that were present on the disk (for password cracking). The
tool needed to run on Windows, Linux and Mac-based systems with no user interaction.
It also had to operate on raw disk images, split-raw volumes and E01 files. The tool
needed to run at the maximum I/O speed of the physical drive and never crash. Through
these interviews, the initial requirements for the bulk_extractor system were developed.
Over the past five years, we have worked to create the tool that those officers desired.

1.1.1 A bulk_extractor Success Story

One early bulk_extractor success story comes from the City of San Luis Obispo Police
Department in the Spring of 2010. The District Attorney filed charges against two in-
dividuals for credit card fraud and possession of materials to commit credit card fraud.
The defendants were arrested with a computer. Defense attorneys were expected to
argue that the defendants were unsophisticated and lacked knowledge to commit the
crime. The examiner was given a 250 GB drive the day before the preliminary hearing;
typically it would take several days to conduct a proper forensic investigation of that
much data.

bulk_extractor found actionable evidence in only two and a half hours including the
following information:

• There were over 10,000 credit card numbers on the hard drive (illegal materials).
Over 1000 of the credit card numbers were unique.

• The most common email address belonged to the primary defendant (evidence of
possession).

• The most commonly occurring internet search engine queries concerned credit card
fraud and bank identification numbers (evidence of intent).

2

• The most commonly visited websites were in a foreign country whose primary
language is spoken by the defendant (evidence of flight risk).

Armed with this data, the defendants were held without bail.

As bulk_extractor has been deployed and used in different applications, it has evolved
to meet additional requirements. This manual describes use cases for the bulk_extractor
system and demonstrates how users can take full advantage of all of its capabilities.

1.2 Purpose of this Manual

This User Manual is intended to be useful to new, intermediate and experienced users of
bulk_extractor . It provides an in-depth review of the functionality included in bulk_extractor
and shows how to access and utilize features through both command line operation and
the Bulk Extractor Viewer. This manual includes working examples with links to
the input data (disk images) used, giving users the opportunity to work through the
examples and utilize all aspects of the system.

1.3 Conventions Used in this Manual

This manual uses standard formatting conventions to highlight file names, directory
names and example commands. The conventions for those specific types are described
in this section.

Names of programs including the post-processing tools native to bulk_extractor and
third-party tools are shown in bold, as in tcpflow.

File names are displayed in a fixed width font. They will appear as filename.txt within
the text throughout the manual.

Directory names are displayed in italics. They appear as directoryname/ within the text.
The only exception is for directory names that are part of an example command. Di-
rectory names referenced in example commands appear in the example command format.

Scanner names are denoted with bold, italicized text. They are always specified in
lower-case, because that is how they are referred in the options and usage information
for bulk_extractor . Names will appear as scannername .

This manual contains example commands that should be typed in by the user. A com-
mand entered at the terminal is shown like this:

� command

The first character on the line is the terminal prompt, and should not be typed. The
black square is used as the standard prompt in this manual, although the prompt shown
on a users screen will vary according to the system they are using.

2 How bulk_extractor Works

bulk_extractor finds email addresses, URLS, and CCNs that other tools miss. This is
due in part to the fact that bulk_extractor optimistically decompresses and re-analyzes

3

EXTRACT FEATURES HISTOGRAM
CREATION POST PROCESSING

.E01
.aff
.dd

.000, .001

Disk image
files
...

DONE

report.xml — log file
telephone.txt — list of phone numbers with context
telephone_histogram.txt — histogram of phone numbers
vcard/ — directory of VCARDs
...

Figure 1: Three Phases of bulk_extractor Operation

all data (e.g. zip fragments, gzip browser cache runs). The decompression operates on
incomplete and corrupted data until decompression fails. bulk_extractor can also build
word lists for password cracking

There are three phases of operation in bulk_extractor : feature extraction, histogram cre-
ation, post processing as shown in Figure 1. The output feature files contain extracted
data designed for easy processing by third party programs or use in spreadsheet tools.
The bulk_extractor histogram system automatically summarizes features.

Features files are written using the feature recording system. As features are discovered,
they are sent to the feature recorder and recorded in the appropriate file. Multiple scan-
ners might write to the same feature file. For example, the exif scanner searches the file
formats used by digital cameras and finds GPS coordinates in images. Those findings
are written to the output file gps.txt by the gps feature recorder. A separate scanner,
the gps scanner, searches Garmin Trackpoint data and also finds GPS coordinates and
writes them to gps.txt. It is worth noting that some scanners also find more than one
type of feature and write to several feature files. For example, the email scanner looks
for email addresses, domains, URLs and RFC822 headers and writes them to email.txt,
domain.txt, url.txt, rfc822.txt and ether.txt respectively.

A feature file contains rows of features. Each row is typically comprised of an offset, a
feature, and the feature in evidence context although scanners are free to store whatever
information they wish. A few lines of an email feature file might look like the following:

OFFSET FEATURE FEATURE IN EVIDENCE CONTEXT
48198832 domexuser2@gmail.com __<name >domexuser2@gmail.com/Home
48200361 domexuser2@live.com __<name >domexuser2@live.com </name
48413823 siege@preoccupied.net ’Brien <siege@preoccupied.net >_l

The types of features displayed in the feature file will vary depending on what type of

4

feature is being stored. However, all feature files use the same format with each row cor-
responding to one found instance of a feature and three columns describing the related
data (offset, feature, and feature in evidence context).

Histograms are a powerful tool for understanding certain kinds of evidence. A histogram
of emails allows us to rapidly determine the drive’s primary user, the user’s organiza-
tion, primary correspondents and other email addresses. The feature recording system
automatically makes histograms as data are processed. When the scanner writes to the
feature recording system, the relevant histograms are automatically updated.

A histogram file will, in general, look like the following file excerpt:
n=875 mozilla@kewis.ch (utf16 =3)
n=651 charlie@m57.biz (utf16 =120)
n=605 ajbanck@planet.nl
...
n=288 mattwillis@gmail.com
n=281 garths@oeone.com
n=226 michael.buettner@sun.com (utf16 =2)
n=225 bugzilla@babylonsounds.com
n=218 berend.cornelius@sun.com
n=210 ips@mail.ips.es
n=201 mschroeder@mozilla.x-home.org
n=186 pat@m57.biz (utf16 =1)

Each line shows a feature and the number of times that feature was found by bulk_extractor
(the histogram indicates how many times the item was found coded as UTF-16). Fea-
tures are stored in the file in order of occurrence with most frequent features appearing
at the top of the file and least frequent displayed at the bottom.

bulk_extractor has multiple scanners that extract features. Each scanner runs in an
arbitrary order. Scanners can be enabled or disabled which can be useful for debug-
ging and speed optimization. Some scanners are recursive and actually expand the data
they are exploring, thereby creating more data that bulk_extractor can analyze. These
blocks are called sbufs. The "s" stands for the word safe. All access to data in the sbuf
is bounds-checked, so buffer overflow events are very unlikely. The sbuf data structure
is one of the reasons that bulk_extractor is so crash resistant. Recursion is used for,
among other things, decompressing ZLIB and Windows HIBERFILE, extracting text
from PDFs and handling compressed browser cache data.

The recursion process requires a new way to describe offsets. To do this, bulk_extractor
introduces the concept of the “forensic path.” The forensic path is a description of the
origination of a piece of data. It might come from, for example, a flat file, a data stream,
or a decompression of some type of data. Consider an HTTP stream that contains a
GZIP-compressed email as shown in Figure 2. A series of scanners will first find the ZLIB
compressed regions in the HTTP stream that contain the email, decompress them, and
then find the features in that email which may include email addresses, names and phone
numbers. Using this method, bulk_extractor can find email addresses in compressed
data. The forensic path for the email addresses found indicate that it originated in an
email, that was GZIP compressed and found in an HTTP stream. The forensic path of
the email addresses features found might be represented as follows:
11052168704 - GZIP -3437 live.com eMn=’domexuser@live.com ’;var srf_sDispM
11052168704 - GZIP -3475 live.com pMn=’domexuser@live.com ’;var srf_sDreCk

5

Figure 2: Forensic path of features found in email lead back to HTTP Stream

11052168704 - GZIP -3512 live.com eCk=’domexuser@live.com ’;var srf_sFT=’<

The full functionality of bulk_extractor is provided both through command line opera-
tion and the GUI tool, Bulk Extractor Viewer. Both modes of operation work for
Linux, Mac and Windows. The following section describes how to download, install and
run bulk_extractor using either the command line or the Bulk Extractor Viewer.

3 Running bulk_extractor

bulk_extractor is a command line tool with an accompanying graphical user interface
tool, Bulk Extractor Viewer. All of the command line functionality of bulk_extractor
is also available in the Bulk Extractor Viewer. Users can access the functionality in
whichever way they prefer. In this manual we review the bulk_extractor user options in
both formats.

bulk_extractor can be run on a Linux, MacOS or Windows system. The fastest way
to run bulk_extractor is on a Linux system. Running on Windows provides the same
results, but the run will typically take 40

3.1 Installation Guide

Installation instructions vary for Linux/Mac users and Windows users. The following
sections explain how to install bulk_extractor .

3.1.1 Installing on Linux or Mac

Before compiling bulk_extractor for your platform, you may need to install other pack-
ages on your system which bulk_extractor requires to compile cleanly and with a full

6

set of capabilities.

Dependencies for Linux Fedora
This command should add the appropriate packages:

� sudo yum update
� sudo yum groupinstall development-tools
� sudo yum install flex

Dependencies for Linux Debian Testing (wheezy) or Ubuntu 13.0
The following command should add the appropriate libraries:

� sudo apt-get -y install gcc g++ flex libewf-dev

Dependencies for Mac Systems
Mac users must first install Apple’s Xcode development system. Other components
should be downloaded using the MacPorts system. If you do not have MacPorts, go to
the App store and download and install it. It is free. Once it is installed, try:

� sudo port install flex autoconf automake libewf-devel

Mac users should note that libewf-devel may not be available in ports. If it is not,
download and un-tar the libewf source, cd into the directory and run:

� ./configure
� make
� sudo make install

Download and Install bulk_extractor
Next, download the latest version of bulk_extractor . The software can be downloaded
from http://digitalcorpora.org/downloads/bulk_extractor/. The file to down-
load will be called bulk_extractor-x.y.z.tar.gz where x.y.z is the latest version. As
of publication of this manual, the latest version of bulk_extractor is 1.4.0.

After downloading the file, un-tar it. Then, in the newly created bulk_extractor-x.y.z
directory, run the following commands to install bulk_extractor in /usr/local/bin (by
default):

� ./configure
� make
� sudo make install

With these instructions, the following directory will not be installed:

• plugins/ - This is for C/C++ developers only. You can develop your own bulk_extractor
plugins which will then be run at run-time with the bulk_extractor executable. Re-
fer to the bulk_extractor Programmers Manual for Developing Scanner
Plug-ins [?] for more information.

Instructions on running bulk_extractor from the command line can be found in Sub-
section 3.2.

The Bulk Extractor Viewer tool is installed as part of the above installation process.
Specific instructions on running it can be found in Subsection 3.3.

7

http://digitalcorpora.org/downloads/bulk_extractor/

Figure 3: Anti-virus software, such as Symantec, often tries to block download of the
installer file

3.1.2 Installing on Windows

Windows users should download the Windows Installer for bulk_extractor . The file
to download is located at http://digitalcorpora.org/downloads/bulk_extractor/
executables/ and is called bulk_extractor-x.y.z-windowsinstaller.exe where x.y.z
is the latest version number (1.4.0 - as of publication of this manual).

Next, run the bulk_extractor-x.y.z-windowsinstaller.exe file. This will automat-
ically install bulk_extractor on your machine. Because this file is not used by many
Windows users, some anti-virus systems will try to manual delete it on download or
block the download as shown in Figure 3. Be aware that you may have to work around
your anti-virus system. Additionally, some Windows versions will try to prevent you
from running it. Figure 4 shows the message Windows 8 displays when trying to run
the installer. To run anyway, click on “More info” and then select “Run Anyway.”

When the installer file is executed, the installation will begin and show a dialog like the
one shown in Figure 5. Users should select the default configuration, which will be the
64-bit configuration for 64-bit Windows systems, or the 32-bit configuration for 32-bit
Windows systems. Click on “Install” and the installer will install bulk_extractor on your
system and then notify you when it is complete.

The automatic installation includes the Bulk Extractor Viewer tool as well as the
complete bulk_extractor system that can be run from the command line. Java 6 or above

8

http://digitalcorpora.org/downloads/bulk_extractor/executables/
http://digitalcorpora.org/downloads/bulk_extractor/executables/

Figure 4: Windows 8 warning when trying to run the installer

Figure 5: Dialog appears when the user executes the Windows Installer

9

must be installed on the machine for the Bulk Extractor Viewer to run. Instructions
on running bulk_extractor from the command line can be found in Subsection 3.2.
Instructions on running it from the Bulk Extractor Viewer are located in Subsec-
tion 3.3.

3.2 Run bulk_extractor from the Command Line

The two main parameters required to run bulk_extractor are an output directory and a
disk image. The output directory must be a directory that does not already exist. The
disk image can be either a file such as a disk image or a directory of individual files.
bulk_extractor cannot process a directory of disk images.

In the following instructions, output is the name of the directory that will be created
to store the bulk_extractor output. The file mydisk.raw is the name of the disk image
that will be extracted by bulk_extractor .

To run bulk_extractor from the command line on any machine, type the following com-
mand:

� bulk_extractor -o output mydisk.raw

The above command on any of the supported operating systems assumes that the disk
image mydisk.raw is located in the directory where the command is being executed.
However, you can point bulk_extractor to a disk image found elsewhere on your ma-
chine by explicitly entering the path to that image.

The following text shows the output that is produced when bulk_extractor is run on
the file nps-2010-emails.E01. The information printed indicates the version number,
input file, output directory and disk size. The screen is updated as bulk_extractor runs
with status information. bulk_extractor then prints performance information and the
number of features found when the run is complete.
C:\>bulk_extractor -o bulk_extractor\Output\nps-2010-emails bulk_extractor\In
putData\nps-2010-emails.E01

bulk_extractor version: 1.4.0
Input file: bulk_extractor\InputData\nps-2010-emails.E01
Output directory: bulk_extractor\Output\nps-2010-emails
Disk Size: 10485760
Threads: 4
All data are read; waiting for threads to finish...
Time elapsed waiting for 1 thread to finish:

(timeout in 60 min .)
Time elapsed waiting for 1 thread to finish:

6 sec (timeout in 59 min 54 sec.)
Thread 0: Processing 0

All Threads Finished!
Producer time spent waiting: 0 sec.
Average consumer time spent waiting: 8.32332 sec.
Phase 2. Shutting down scanners
Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...
ip histogram... lightgrep histogram... tcp histogram...
telephone histogram... url histogram... url microsoft-live...

10

url services... url facebook-address... url facebook-id...
url searches...Elapsed time: 11.1603 sec.

Overall performance: 0.939557 MBytes/sec
Total email features found: 67

Note that bulk_extractor has automatically selected to use 4 threads; this is because the
program was run on a computer with 4 cores. In general, bulk_extractor automatically
determines the correct number of cores to use. It is not necessary to set the number of
threads to use.

After running bulk_extractor , examine the output directory specified by name in the run
command. There should now be a number of generated output files in that directory.
There are several categories of output created for each bulk_extractor run. First, there
are feature files grouped by category, which contain the features found and include the
path, feature and context. Second, there are histogram files that allow users to quickly
see the features grouped by the frequency in which they occur. Certain kinds of files,
such as JPEGs and KML files, may be carved into directories. Finally, bulk_extractor
creates a file report.xml, in DFXML format, that captures the provenance of the run.
After bulk_extractor has been run, all of these files will be found in the output directory
specified by the user.

The text below shows the results of running the command ls -s within the output
directory from the bulk_extractor run on the disk image nps-2010-emails.E01. The
numbers next to the file names indicate the file size and show that several of the files,
including email.txt and domain.txt, were populated with features during the run.
C:\bulk_extractor\Output\nps-2010-emails>ls -s

total 303
0 aes_keys.txt 0 kml.txt
0 alerts.txt 0 lightgrep.txt
0 ccn.txt 0 lightgrep_histogram.txt
0 ccn_histogram.txt 0 rar.txt
0 ccn_track2.txt 8 report.xml
0 ccn_track2_histogram.txt 0 rfc822.txt

64 domain.txt 0 tcp.txt
1 domain_histogram.txt 0 tcp_histogram.txt
0 elf.txt 0 telephone.txt

16 email.txt 0 telephone_histogram.txt
4 email_histogram.txt 96 url.txt
0 ether.txt 0 url_facebook-address.txt
0 ether_histogram.txt 0 url_facebook-id.txt
1 exif.txt 4 url_histogram.txt
0 find.txt 0 url_microsoft-live.txt
0 find_histogram.txt 0 url_searches.txt
0 gps.txt 1 url_services.txt
0 hex.txt 0 vcard.txt
0 ip.txt 12 windirs.txt
0 ip_histogram.txt 0 winpe.txt
0 jpeg 0 winprefetch.txt
8 jpeg.txt 88 zip.txt
0 json.txt

There are numerous feature files produced by bulk_extractor for each run. A feature
file is a tab-delimited file that show a feature on each row. Each row includes a path, a
feature and the context. The files are in UTF-8 format.

Any of the feature files created by bulk_extractor may have an accompanying *_stopped.txt

11

file found in the output directory. This file will show all stopped entries of that type that
have been found so that users can examine those files to make sure nothing critical has
been hidden. A stopped features is a feature that appears in a stop list. The stop list is a
list of features that are not of concern for a particular investigation. For example, users
may input a stop list file to bulk_extractor that contains numerous email addresses that
should be ignored and not marked as a found feature. Rather than throwing away those
results when they are found, bulk_extractor will create a file, named email_stopped.txt
that shows all email addresses from the stop list that were found during the run. The
stopped email addresses will not show up in the email.txt file. More information on
creating and using stop lists can be found in Subsection 4.4.

While the above commands are all that is required for basic operation, there are nu-
merous usage options that allow the user to affect input and output, tuning, path pro-
cessing mode, debugging, and control of scanners. All of those options are described
when bulk_extractor is run with the -h (help) option. It is important to note that the
overwhelming tendency of users is to use many of these options; however, that is not
generally recommended. Most of the time, the best way to run bulk_extractor is with
no options specified other than -o to specify the output directory. For best performance
and results users should avoid adding them in general. Only advanced sers in specific
cases should use these options.

Running bulk_extractor with only the -h option specified produces the output shown
in Appendix A. To run any optional usage options, they should be inserted before
the input and output options are specified. Specifically, the order should look like the
following:

� bulk_extractor [Usage Options] -o output mydisk.raw

The specific order in which multiple usage options are specified matters. Some of the
options are discussed within the following sections for specific use cases, other options
are for programmer or experimental use. In general, avoid using the options unless in-
dicated for a specific purpose.

3.3 Run bulk_extractor from Bulk Extractor Viewer

On a Linux or Mac system, go to the directory where the Bulk Extractor Viewer is
installed or specify the full path name to the jar file. It will be in the location where
the bulk_extractor code was installed and in the sub-directory labeled java_gui. From
that directory, run the following command to start the Bulk Extractor Viewer:

� ./BEViewer

3.4 Run bulk_extractor from Bulk Extractor Viewer

Windows users should go to the Start menu and choose Programs->Bulk_Extractor
x.y.z->BE Viewer with Bulk_extractor x.y.z (64-bit). If the 64-bit version can not be
run on your machine, you can choose the 32-bit version. The Troubleshooting section
describes some limits users of the 32-bit version might encounter.

12

Figure 6: What Bulk Extractor Viewer looks like when it is started

When the Bulk Extractor Viewer starts up, it will look like Figure 6. The look and
feel may vary slightly according to the specific operating system but all options should
appear similar. To run bulk_extractor from the viewer, click on the icon that looks like
a gear with a down arrow. It is next to the Print icon below the Tools menu. Clicking
on this icon will bring up the “Run bulk_extractor” Window as shown in Figure 7.

Next, in the “Run bulk_extractor” window select the Image File and Output Feature
Directory to run bulk_extractor . Figure 8 shows an example where the user has selected
the file nps-2010-emails.E01 as input and is going to create a directory called nps-2010-
charlie-output in the parent directory C:\bulk_extractor\Output. Note that figures may
vary slightly in future versions of bulk_extractor but the major functionality will remain
the same.

After selecting the input and output directories, click on the button at the bottom of the
“Run bulk_extractor” window labeled “Start bulk_extractor.” This will bring up the
window shown in Figure 9 that updates as bulk_extractor is running, providing status
information during the run and after the run is complete.

When the run is complete, a dialog will pop-up indicating the results are ready to be
viewed. Figure 10 shows this dialog. Click the “Ok” button which will return you to the
main Bulk Extractor Viewer window to view the results of the run. The “Reports”
window on the left will now show the newly created report. In this example, the report
is called “nps-2010-emails-output.” Clicking once on this report name will expand the

13

Figure 7: Clicking on the gear icon brings up this “Run bulk_extractor” Window

14

Figure 8: After selecting an Image File for input, the user must select an output
directory to create

15

Figure 9: Status window that shows what happens as bulk_extractor runs and indicates
when bulk_extractor is complete

16

Figure 10: Dialog indicating the run of bulk_extractor is complete and results are
ready to be viewed

report and show all of the files that have been created as shown in Figure 11.

Clicking on one of the files will bring that file up in the “Feature File” window in the
middle of the screen. In the example, the user clicked on email.txt to view the email
feature file. Clicking on one of the features, in this case rtf_text@textedit.com, shows
the feature in context within the feature file on the right hand side of the window as
shown in Figure 12.

The user can also view histogram files in the Bulk Extractor Viewer. Clicking on
the file, email_histogram.txt in the Reports window on the left hand side will bring
up the contents of the histogram file in the middle window. It will also display the
referenced feature file in the window below the histogram file. In this case, the refer-
enced feature file is email.txt. Clicking on a feature in the histogram, in this example
rtf_text@textedit.com, will display the feature in context as found within the feature
file on the right hand side of the screen as shown in Figure 13.

4 Processing Data

4.1 Types of Input Data

The bulk_extractor system can handle multiple image formats including E01, raw, split
raw and individual disk files as well as raw devices or files. It can also operate on mem-
ory and packet captures, although packet captures will be more completely extracted if
you pre-process them with tcpflow.

The scanners all serve different functions and look for different types of information.
Often, a feature will be stored in a format not easily accessible and will require multiple
scanners to extract the feature data. For example, some PDF files contain text data
but the PDF format is not directly searchable by the scanner that finds email addresses
or the scanner that looks for keywords. bulk_extractor resolves this by having the two
scanners work together. The pdf scanner will first extract all of the text from the
PDF and then the other scanners will look at the extracted text for features. This is
important to remember when turning scanners off and on, as scanners work together to
retrieve the features from the disk image. The types of information examined, extracted
or carved by the existing bulk_extractor scanners are as described in Table 1, along
with the scanners that process them and the specific sections where they are referenced
in this manual.

17

Figure 11: Reports window shows the newly created report and all of the files created
in that report

18

Figure 12: While viewing the feature file, the user can select a feature to view with
it’s full context in the feature file as shown in the right hand side of the window

19

Figure 13: User can view histograms of features, referenced feature files and specific
features in context

20

4.2 Scanners

There are multiple scanners deployed with the bulk_extractor system. For a detailed list
of the scanners installed with your version of bulk_extractor , run the following command:
� bulk_extractor -H

This command will show all of the scanners installed with additional information in-
cluded about each scanner. Specifically, there is a description for each scanner, a list of
the features it finds and any relevant flags. A sample of the output is below:
Scanner Name: accts
flags: NONE
Scanner Interface version: 3
Author: Simson L. Garfinkel
Description: scans for CCNs, track 2, and phone #s
Scanner Version: 1.0
Feature Names: alerts ccn ccn_track2 telephone

Scanner Name: base16
flags: SCANNER_RECURSE
Scanner Interface version: 3
Author: Simson L. Garfinkel
Description: Base16 (hex) scanner
Scanner Version: 1.0
Feature Names: hex

...

Scanner Name: wordlist
flags: SCANNER_DISABLED
Scanner Interface version: 3
Author:
Description:
Scanner Version:
Feature Names: wordlist

This output shows that the accts scanner looks for credit card numbers, credit card track
2 information and phone numbers and finds the feature names alerts, ccn, ccn_track2
and telephone. This means it writes to the feature files alerts.txt, ccn.txt, ccn_track2.txt,
and telephone.txt.

The output also shows that the base16 scanner is a recursive scanner (indicated by
the flag SCANNER_RECURSE) meaning it expands data or finds new data for other
scanners to process. It also writes to the file hex.txt.

Finally, the output shows that the wordlist scanner is disabled by default (indicated
by the flag SCANNER_DISABLED). This means that if the user would like to use the
wordlist scanner, it will have to be specifically enabled. The wordlist scanner is useful
for password cracking and is discussed in Subsection 5.4.

In general, most users will not need to enable or disable scanners. The default settings
installed with the bulk_extractor system work best for the majority of users. However,
individual scanners can be enabled or disabled for different purposes. To enable the
wordlist scanner, which is disabled by default, use the following command:

� bulk_extractor -e wordlist -o output diskimage.raw

21

Additionally, users can disable a scanner that is enabled by default. Most of the scanners
are enabled by default. To disable the accts scanner, which is very CPU intensive, run
the following command:

� bulk_extractor -x accts -o output diskimage.raw

The command -E disables all scanners, then enables the one that follows the option. For
example, to disable all scanners except the aes scanner, use the following command:

� bulk_extractor -E aes -o output diskimage.raw

The options -E, -e and -x are all processed in order. So, the following command will also
disable all scanners and then enable the aes scanner:

� bulk_extractor -x all -e aes -o output diskimage.raw

Some of the scanners installed with bulk_extractor have parameters that can be set and
utilized by advanced users for different purposes. Those parameters are also described
in the -H output described above (as well as the -h output) and include the following:

Settable Options (and their defaults):
-S work_start_work_end=YES Record work start and end of each scanner in report.xml file ()
-S enable_histograms=YES Disable generation of histograms ()
-S debug_histogram_malloc_fail_frequency=0 Set >0 to make histogram maker fail with memory allocations ()
-S hash_alg=md5 Specifies hash algorithm to be used for all hash calculations ()
-S dup_data_alerts=NO Notify when duplicate data is not processed ()
-S write_feature_files=YES Write features to flat files ()
-S write_feature_sqlite3=NO Write feature files to report.sqlite3 ()
-S report_read_errors=YES Report read errors ()
-S ssn_mode=0 0=Normal; 1=No ‘SSN’ required; 2=No dashes required (accts)
-S min_phone_digits=6 Min. digits required in a phone (accts)
-S carve_net_memory=NO Carve network memory structures (net)
-S word_min=6 Minimum word size (wordlist)
-S word_max=14 Maximum word size (wordlist)
-S max_word_outfile_size=100000000 Maximum size of the words output file (wordlist)
-S wordlist_use_flatfiles=NO Override SQL settings and use flatfiles for wordlist (wordlist)
-S hashdb_mode=none Operational mode [none|import|scan]

none - The scanner is active but performs no action.
import - Import block hashes.
scan - Scan for matching block hashes. (hashdb)

-S hashdb_block_size=4096 Hash block size, in bytes, used to generte hashes (hashdb)
-S hashdb_ignore_empty_blocks=YES Selects to ignore empty blocks. (hashdb)
-S hashdb_scan_path_or_socket=your_hashdb_directory File path to a hash database or

socket to a hashdb server to scan against. Valid only in scan mode. (hashdb)
-S hashdb_scan_sector_size=512 Selects the scan sector size. Scans along

sector boundaries. Valid only in scan mode. (hashdb)
-S hashdb_import_sector_size=4096 Selects the import sector size. Imports along

sector boundaries. Valid only in import mode. (hashdb)
-S hashdb_import_repository_name=default_repository Sets the repository name to

attribute the import to. Valid only in import mode. (hashdb)
-S hashdb_import_max_duplicates=0 The maximum number of duplicates to import

for a given hash value, or 0 for no limit. Valid only in import mode. (hashdb)
-S exif_debug=0 debug exif decoder (exif)
-S jpeg_carve_mode=1 0=carve none; 1=carve encoded; 2=carve all (exif)
-S min_jpeg_size=1000 Smallest JPEG stream that will be carved (exif)
-S zip_min_uncompr_size=6 Minimum size of a ZIP uncompressed object (zip)
-S zip_max_uncompr_size=268435456 Maximum size of a ZIP uncompressed object (zip)
-S zip_name_len_max=1024 Maximum name of a ZIP component filename (zip)
-S unzip_carve_mode=1 0=carve none; 1=carve encoded; 2=carve all (zip)
-S rar_find_components=YES Search for RAR components (rar)

22

-S raw_find_volumes=YES Search for RAR volumes (rar)
-S unrar_carve_mode=1 0=carve none; 1=carve encoded; 2=carve all (rar)
-S gzip_max_uncompr_size=268435456 maximum size for decompressing GZIP objects (gzip)
-S pdf_dump=NO Dump the contents of PDF buffers (pdf)
-S opt_weird_file_size=157286400 Weird file size (windirs)
-S opt_weird_file_size2=536870912 Weird file size2 (windirs)
-S opt_max_cluster=67108864 Ignore clusters larger than this (windirs)
-S opt_max_cluster2=268435456 Ignore clusters larger than this (windirs)
-S opt_max_bits_in_attrib=3 Ignore FAT32 entries with more attributes set than this (windirs)
-S opt_max_weird_count=2 Ignore FAT32 entries with more things weird than this (windirs)
-S opt_last_year=2019 Ignore FAT32 entries with a later year than this (windirs)
-S xor_mask=255 XOR mask string, in decimal (xor)
-S sqlite_carve_mode=2 0=carve none; 1=carve encoded; 2=carve all (sqlite)

To use any of these options, the user should specify the -S with the name=value pair
when running bulk_extractor as in the following example:

� bulk_extractor -S name=value -o output diskimage.raw

As with the other scanner and bulk_extractor usage options, most users will not have
to use any of these options.

4.3 Carving

File carving is a special kind of carving in which files are recovered. File carving is use-
ful for both data recovery and forensic investigations because it can recover files when
sectors containing file system metadata are either overwritten or damaged [?]. Cur-
rently, bulk_extractor provides carving of contiguous JPEG, ZIP and RAR files. To
carve fragmented files we recommend PhotoRec (free) or Adroit Photo Recovery(
commercial). Additionally, Forensics Toolkit and EnCase Forensic provide some
carving capability on fragmented files.

Carved results are stored in two different places. First, a file listing all the files that
are carved are written to a corresponding .txt file: JPEG files to jpeg.txt, ZIP files to
unzip.txt and RAR files to unrar.txt. Second, the carved JPEG, ZIP and RAR files
are placed in binned directories that are named /jpeg, /unzip and /unrar respectively.
For example, all carved JPEGs will go in the directory /jpeg. The output files are further
binned with 1000 files in each directory. The directory names are 3 decimal digits. If
there are more than 999,000 carved files of one type, then the next set of directories
are named with 4 digits. File names for JPEGs are the forensicpath.jpg. File names
for the ZIP carver are the forensicpath_filename. If the ZIP file name has slashes in
it (denoting directories), they are turned into ’_’ (underbars). For example, the file
mydocs/output/specialfile will be named mydocs_output_specialfile.

As the above table describes, there are three carving modes in bulk_extractor that can
be specified separately for each file type, JPEG, ZIP or RAR. The first mode, mode 0,
explicitly tells bulk_extractor not to carve files of that type. The second mode, mode
1, is on by default and tells bulk_extractor to carve only encoded files of that type. If
the user is running the ZIP carver in mode 1 and there is a simple ZIP file, it will not
get carved. However, if there is an encoded attachment of that file (like Base64) it will
get carved. The final mode, mode 2, will carve everything of that type. There is no way
to specify which types of files (particular extensions) will get carved and which will not
in mode 2. For example, bulk_extractor will carve both JPEGs and doc files. It carves

23

whatever is encountered.

To specify the carving modes for bulk_extractor , command line arguments can be spec-
ified. To modify the JPEG carving modes, type the following where carve mode 1=de-
fault value that does not need to be specified (carve encoded), 0=no carving or 2=carve
everything:

� bulk_extractor -S jpeg_carve_mode=1 -o output diskimage.raw

To modify the ZIP carving modes, type the following where carve mode 1=default value
that does not need to be specified (carve encoded), 0=no carving or 2=carve everything:

� bulk_extractor -S zip_carve_mode=1 -o output diskimage.raw

To modify the RAR carving modes, type the following where carve mode 1=default value
that does not need to be specified (carve encoded), 0=no carving or 2=carve everything:

� bulk_extractor -S rar_carve_mode=1 -o output diskimage.raw

Any combination of the carving mode options can be specified for a given run. The
carvers can run in any combination of modes. For example, the JPEG carver can be
run in mode 2 while the RAR carving is turned off in mode 1 and the ZIP carver carves
only encoded files in mode 1.

Because bulk_extractor can carve files and preserve original file extensions, there is a real
possibility that bulk_extractor might be carving out malware. There is no protection
in bulk_extractor against putting malware in a file on your hard drive. Users running
bulk_extractor to look for malware should turn off all anti-virus software because the
anti-virus program will think its creating malware and stop it. Then the user should
carefully scan the results looking for malware before re-enabling the anti-virus.

4.4 Suppressing False Positives

Modern operating systems are filled with email addresses. They come from Windows
binaries, SSL certificates and sample documents. Most of these email addresses, par-
ticularly those that occur the most frequently, such as someone@example.com, are not
relevant to the case. It is important to be able to suppress those email addresses not
relevant to the case. To address this problem, bulk_extractor provides two approaches.

First, bulk_extractor allows users to build a stop list or use an existing one available for
download. These stop lists are used to recognize and dismiss the email addresses that
are native to the Operating System. This approach works well for email addresses that
are clearly invalid, such as someone@example.com. For most email addresses, however,
you will want to stop them in some circumstances but not others. For example, there
are over 20,000 Linux developers, you want to stop their email addresses in program
binaries, not in email messages.

To address this problem, bulk_extractor uses context-sensitive stop lists. Instead of a
stop list of features, this approach uses the feature+context. The following example is
an excerpt from a context-sensitive stop list file.

24

Figure 14: Email Histogram Results With and Without the Context-Sensitive Stop
List. Results from the Domexusers HD image.

ubuntu -users@lists.ubuntu.com Maint\x0A935261357\x09ubuntu -users@lists.ubuntu.com\x0
ubuntu -motu@lists.ubuntu.com untu_\x0A923867047\x09ubuntu -motu@lists.ubuntu.com\x09
pschiffe@redhat.com Peter Schiffer <pschiffe@redhat.com > - 0.8 -1.1N\x94/\xC0 -
phpdevel@echospace.com : Vlad Krupin <phpdevel@echospace.com >\ x0AMAINTENANCE:
anholt@freebsd.org 34-GZIP -1021192\ x09anholt@freebsd.org\x09r: EricAnholt
ubuntu -motu@lists.ubuntu.com http\x0A938966489\x09ubuntu -motu@lists.ubuntu.com\x09

The context for the feature is the 8 characters on either side of the feature. Each “stop
list” entry is the feature+context. This ignores Linux developer email addresses in Linux
binaries. The email address will be ignored if found in that context but reported if it
appears in a different context.

There is a context-sensitive stop list for Microsoft Windows XP, 2000, 2003, Vista and
several Linux systems. The total stop list is 70 MB and includes 628,792 features in
a 9 MB zip file. The context-sensitive stop list prunes many of the OS-supplied fea-
tures. By applying it to the domexusers HD image (the image can be downloaded at
http://http://digitalcorpora.org/corp/nps/drives/nps-2009-domexusers/, the
number of emails found went from 9,143 down to 4,459. This significantly reduces the
amount of work to be done by the investigator. Figure 14 shows how the histogram of
email addresses differs when bulk_extractor is run with and without the context-sensitive
stop list. The context-sensitive stop list built for the various operating systems de-
scribed above can be downloaded from http://digitalcorpora.org/downloads/bulk_
extractor. The file will have the words “stoplist” in it somewhere. The current version
as of publication of this manual is called bulk_extractor-3-stoplist.zip.
It should be noted that bulk_extractor does allow the users to create stop lists that
are not context sensitive. A stop list can simply be a list of words that the user wants
bulk_extractor to ignore. For example, the following three lines would constitute a valid
stop list file:

25

http://http://digitalcorpora.org/corp/nps/drives/nps-2009-domexusers/
http://digitalcorpora.org/downloads/bulk_extractor
http://digitalcorpora.org/downloads/bulk_extractor

abc@google.com
ignore@microsoft.com
www.google.com

However for the reasons stated above, it is recommended that users rely on context-
sensitive stop lists when available to reduce the time required to analyze the results of
a bulk_extractor run.

Stopped results are not completely hidden from users. If stopped feature are discov-
ered, they will be written to the appropriate category feature file with the extension
_stopped.txt. For example, stopped domain names that are found in the disk image
will be written to domain_stopped.txt in the output directory. The stopped files serve
the purpose of allowing users to verify that bulk_extractor is functioning properly and
that the lists they have written are being processed correctly.

4.5 Using an Alert List

Users may have specific words, or feature in a given context, that are important to their
investigation. The alert list allows bulk_extractor to specifically alert or flag the user
when those concepts are found. Alert lists can contain a list of words or a feature file.
The feature file operates much in the same way as the feature files used for context-
sensitive stop lists. It will provide a feature but alert on that feature only when it’s
found in the specified context.

A sample alert list file might look like the following:

abc@google.com
SilentFury2012
www.maliciousintent.com

While this list does not appear to help in any particular investigation, it demonstrates
that you can specify distinct words that are important to their analysis. Results con-
taining the alert list information are found in the file alert.txt in the run output
directory.

4.6 The Importance of Compressed Data Processing

Many forensic tools frequently miss case-critical data because they do not examine cer-
tain classes of compressed data found. For example, a recent study of 1400 drives found
thousands of email addresses that were compressed but in unallocated space[?]. Without
looking at all the data on each drive and optimistically decompressing it, those features
would be missed. Compressed email addresses, such as those in a GZIP file, do not
look like email addresses to a scanner; they must first be decompressed to be identified.
Although some of these features are from software distributions, many are not. Table 3
shows the kinds of encodings that can be decoded by bulk_extractor [?].
The reason that users must be aware of this is because users have a tendency to want
to enable and disable scanners for specific uses; They can unintentionally damage their
results. For example, if a user only wants to find email addresses, they may try to turn
off all scanners except the email scanner. This will find some email addresses. However,
it will miss the email addresses on the media that are only present in compressed data.
This is because scanners such as zip, rar and gzip will not be running. Those scanners

26

each work on a different type of compressed data. For example, the gzip scanner will
find GZIP compressed data, decompress it and then pass it other scanners to search for
features. In that way, GZIP compressed emails can be processed by bulk_extractor .

The pdf scanner is another type of scanner that finds text that otherwise wouldn’t be
found. While PDF files are human readable, they are not readable but many software
tools and scanners because of their formatting. The pdf scanner extracts some kinds
of text found within PDFs and then passes that text on to other scanners for further
processing. Many typical disk images include PDF files, so most users will want to have
this scanner enabled (as it is by default).

Finally, the hiber scanner decompresses Windows hibernation files. If the disk image
being analyzed is from a Windows system, bulk_extractor users will want that turned
on (as it is by default). The scanner is very fast, however, so it will not significantly
decrease performance on non-Windows drives.

5 Use Cases for bulk_extractor

There are many digital forensic use cases for bulk_extractor— more than we can enu-
merate within this manual. In this section we highlight some of the most common uses
of the system. Each case discusses which output files, including feature files and his-
tograms, are most relevant to these types of investigations. In Section 8, Worked
Examples, we provide more detailed walk-throughs and refer back to these use cases
with more detailed output file information.

5.1 Malware Investigations

Malware is a programmatic intrusion. When performing a malware investigation, users
will want to look at executables, information that has been downloaded from web-
based applications and windows directory entries (for Windows-specific investigations).
bulk_extractor enables this in several ways.

First, bulk_extractor finds evidence of virtually all executables on the hard drive includ-
ing those by themselves, those contained in ZIP files, and those that are compressed.
It does not give you the hash value of the full file, rather, it gives the hash of just the
first 4KB of the file. Our research has shown that the first 4KB is predictive because
most executables have a distinct hash value for the first 4KB of the file [?]. Additionally,
many of these files may be fragmented and looking at the first 4KB will still provide
information relevant to an investigation because fragmentation is unlikely to happen
before the first 4KB. The full hash of a fragmented file is not available in bulk_extractor .

Several output feature files produced by bulk_extractor contain relevant and important
information about executables. These files include:

• elf.txt — This file (produced by the elf scanner) contains information about
ELF executables that can be used to target Linux and Mac systems.

• winprefetch.txt — This file (produced by the winprefetch scanner lists the
current and deleted files found in the Windows prefetch directory.

27

The XML in these feature files is too complicated to review without using other ap-
plications. The recommended way to analyze the executable output is to use a third
party tool that analyzes executables or pull the results into a spreadsheet. In a spread-
sheet, one column could contain the hash values and those values can be compared
against a database of executable hashes. There is also a python tool that comes with
bulk_extractor called identify_filenames.py that can be used to get the full filename
of the file. The python tool is discussed in more detail in Section 7.

For Windows specific malware investigations, the files winpe.txt and winprefetch.txt
are very useful. They are produced by the winpe and winprefetch scanners respec-
tively. Windows Prefetch shows files that have been prefetched in the Windows prefetch
directory and shows the deleted files that were found in unallocated space. The Windows
PE feature file shows entries related to the Windows executable files.

JSON, the JavaScript Object Notation, is a lightweight data-interchange format. Web-
sites tend to download a lot of information using JSON. The output file json.txt,
produced by the json scanner, can be useful for malware investigations and analysis of
web-based applications. If a website has downloaded information in JSON format, the
JSON scanner may find that information in the browser cache.

5.2 Cyber Investigations

Cyber investigations may scan a wide variety of information types. A few unifying
features of these investigations are the need to find encryption keys, hash values and
information about ethernet packets. bulk_extractor provides several scanners that pro-
duce feature files containing this information.

For encryption information, the following feature files may be useful:

• aes.txt — AES is an encryption system. Many implementations leave keys in
memory that can be found using an algorithm invented at Princeton University.
bulk_extractor provides an improved version of that algorithm to find AES keys
in the aes scanner. When it scans memory, such as swap files or decompressed
hibernation files, it will identify the AES keys. The keys can be used for software
that will decrypt AES encrypted material.

• hex.txt — The base16 scanner decodes information that is stored in Base16,
breaking it into the corresponding hexidecimal values. This is useful if you are
looking for AES keys or SHA1 hashes. This scanner only writes blocks that are of
size 128 and 256 because they are the sizes used for encryption keys. The feature
file is helpful if the investigator is looking for people who have emailed encryption
keys or hash values in a cyber investigation.

Additionally, the base64 scanner is important for cyber investigations because it looks
mostly at email attachments that are coded in Base64. The information found in these
attachments will be analyzed by other scanners looking for specific features.

The windirs scanner finds Windows FAT32 and NTFS directory entries and will also be
useful for cyber investigations involving Windows machines, as they may be indicators
of times that activity took place.

28

Finally, the files ether.txt, ip.txt, tcp.txt and domain.txt are all produced by the
net scanner. It searches for ethernet packets and memory structures associated with
network data structures in memory. It is important to note that tcp connections have
a lot of false positives and many of the information found by this scanner will be false.
Investigators should be careful with the interpretation of these feature files for that
reason.

5.3 Identity Investigations

Identity investigations may be looking for a wide variety of information including email
addresses, credit card information, telephone numbers, geographical information and
keywords. For example, if the investigator is trying to find out of who a person is and
who their associates are, they will be looking at phone numbers, search terms to see
what they are doing and emails to see who they are communicating with.

The accts scanner is very useful for identity investigations. It produces several feature
files with identity information including:

• ccn.txt — credit card numbers

• ccn_track2.txt - credit card track two information - relevant information if some-
one is trying to make physical fake credit cards

• pii.txt - personally identifiable information including birth dates and social num-
bers

• telephone.txt - telephone numbers

The kml and gps scanner both produce GPS information that give information about
a person in a certain area or link to what they have been doing in a certain area. Both
of these scanners write to gps.txt. KML is a format used by Google Earth and Google
Map files. This scanner searches in that formatted data for GPS coordinates. The gps
scanner looks at Garmin Trackpoint formatted information and finds GPS coordinates
in that data.

The email scanner looks for email addresses in all data and writes that to email.txt.
The vcard scanner looks at vCard data, an electronic business card format, and finds
names, email addresses and phone numbers to write to the respective feature file.

The are multiple url files including url.txt, url_facebook-address, url_facebook-id,
url_microsoft-live, url_searches.txt and url_services.txt that are produced by
the email scanner. They are useful for looking at what websites a person has visited as
well as the people they are associating with.

An important aspect of identity investigations (as well as other types) is the ability to
search the data for a list of keywords. bulk_extractor provides the capability to do that
through two different means. First, the find scanner is a simple regular expression finder
that uses regular expressions. The find scanner looks through the data for anything
listed in the global find list. The format of the find list should be rows of regular
expressions while any line beginning with a # is considered a comment. The following
is an excerpt from a sample find list file:

29

This is a comment line
\b\d{1 ,3}\.\d{1 ,3}\.\d{1 ,3}\.\d{1 ,3}\b
another comment line
/^[a-z0 -9_-]{3 ,16}$/

The first regular expression from the above example, beginning with \b, looks for the
following in order: a word boundary followed a digit repeated between 1-3 times, a digit
repeated between 1-3 times, a digit repeated 1-3 times, a ’.’, a digit repeated 1-3 times,
a digit repeated 1-3 times and the end of the word boundary. That regular expression
would find, for example, the sequence 2219.889 separated out from other text by a word
boundary.

The second regular expression from the above example, beginning with / looks for the
following in order: a ’/’, the beginning of a line, repeats of any character in lowercase
a-z, 0-9, ’_’, or ’-’, repeated 3 to 16 times, and the end of the line followed by ’\.’ That
expression would find, for example, the following sequence:
\
284284284284
/
Regular expressions can be used to represent character and number sequences (or ranges
of values) that might be of particular importance to an investigation.

The find list is sent in as input to bulk_extractor using the “-F findlist” option. To
run bulk_extractor with a find list, the following basic parameters are required (where
findlist.txt is the name of the find list):

� bulk_extractor -F findlist.txt -o output mydisk.raw

Another scanner, the lightgrep scanner provides the same functionality as the find
scanner but it is much faster and provides more functionality. It is also a regular ex-
pression scanner that looks through the buffers and matches in the global find list. A
syntax sheet of regular expressions that might be helpful to users in creating a find list
to be used by the Lightgrep Scanner is shown in Figure 15.

The lightgrep scanner uses the Lightgrep library from Lightbox Technologies. An
open source version of that library can be downloaded from https://github.com/
LightboxTech/liblightgrep. Installation instructions are also available at the down-
load site. The lightgrep scanner is preferable because it looks for all regular expressions
at once, on the first pass through the data. The find scanner actually looks for each
expression in the find list one at a time. For example, if the find list is a list of medical
terms and diagnoses and bulk_extractor is searching medical records, the find scanner
looks for each term in each piece of data on one pass through, one at a time. A list of
35 expressions would require 35 passes through the data. The lightgrep scanner will
search a given buffer for all of the medical terms at once, in one pass through.

If the Lightgrep library is installed and the find list is provided to bulk_extractor , it
will run the lightgrep scanner. If not, it will use the find scanner. Neither scanner
needs to be enabled by the user specifically, calling bulk_extractor with the find list will
automatically enable the appropriate scanner. However, we do not recommend using
the find list without the Lightgrep library — it will make bulk_extractor run very slowly
because each find search will be sequentially executed. This will provide an exponential

30

https://github.com/LightboxTech/liblightgrep
https://github.com/LightboxTech/liblightgrep

Lightgrep Cheat Sheet
c the character c⇤

\a U+0007 (BEL) bell
\e U+001B (ESC) escape
\f U+000C (FF) form feed
\n U+000A (NL) newline
\r U+000D (CR) carriage return
\t U+0009 (TAB) horizontal tab
\ooo U+ooo, 1–3 octal digits o,  0377
\xhh U+00hh, 2 hexadecimal digits h
\x{hhhhhh} U+hhhhhh, 1–6 hex digits h
\zhh the byte 0xhh (not the character!)†
\N{name} the character called name
\N{U+hhhhhh} same as \x{hhhhhh}
\c the character c‡

⇤except U+0000 (NUL) and metacharacters
†Lightgrep extension; not part of PCRE.
‡except any of: adefnprstwDPSW1234567890

1 Single Characters

. any character
\d [0-9] (= ASCII digits)
\D [^0-9]
\s [\t\n\f\r] (= ASCII whitespace)
\S [^\t\n\f\r]
\w [0-9A-Za-z_] (= ASCII words)
\W [^0-9A-Za-z_]
\p{property} any character having property
\P{property} any character lacking property

2 Named Character Classes

[stu�] any character in stu�
[^stu�] any character not in stu�
where stu� is. . .

c a character
a-b a character range, inclusive
\zhh a byte
\zhh-\zhh a byte range, inclusive
[S] a character class
ST S [T (union)
S&&T S \ T (intersection)
S--T S � T (di�erence)
S~~T S 4 T (symmetric di�erence, XOR)

3 Character Classes

(S) makes any pattern S atomic

4 Grouping

ST matches S, then matches T
S|T matches S or T , preferring S

5 Concatenation & Alternation

Repeats S. . .

Gr
ee
dy

S* 0 or more times (= S{0,})
S+ 1 or more times (= S{1,})
S? 0 or 1 time (= S{0,1})
S{n,} n or more times
S{n,m} n–m times, inclusive

Re
lu
ct
an

t S*? 0 or more times (= S{0,})
S+? 1 or more times (= S{1,})
S?? 0 or 1 time (= S{0,1})
S{n,}? n or more times
S{n,m}? n–m times, inclusive

6 Repetition

Any Assigned
Alphabetic White_Space
Uppercase Lowercase
ASCII Noncharacter_Code_Point
Name=name Default_Ignorable_Code_Point
General_Category=category
L, Letter P, Punctuation
Lu, Uppercase Letter Pc, Connector Punctuation
Ll, Lowercase Letter Pd, Dash Punctuation
Lt, Titlecase Letter Ps, Open Punctuation
Lm, Modifier Letter Pe, Close Punctuation
Lo, Other Letter Pi, Initial Punctuation
M, Mark Pf, Final Punctuation
Mn, Non-Spacing Mark Po, Other Punctuation
Me, Enclosing Mark Z, Separator
N, Number Zs, Space Separator
Nd, Decimal Digit Number Zl, Line Separator
Nl, Letter Number Zp, Paragraph Separator
No, Other Number C, Other
S, Symbol Cc, Control
Sm, Math Symbol Cf, Format
Sc, Currency Symbol Cs, Surrogate
Sk, Modifier Symbol Co, Private Use
So, Other Symbol Cn, Not Assigned

Script=script
Common Latin Greek Cyrillic Armenian Hebrew Ara-
bic Syraic Thaana Devanagari Bengali Gurmukhi Gu-
jarati Oriya Tamil Telugu Kannada Malayalam Sin-
hala Thai Lao Tibetan Myanmar Georgian Hangul
Ethiopic Cherokee Ogham Runic Khmer Mongolian
Hiragana Katakana Bopomofo Han Yi Old_Italic
Gothic Inherited Tagalog Hanunoo Buhid Tagbanwa
Limbu Tai_Le Linear_B Ugaritic Shavian Osmanya
Cypriot Buginese Coptic New_Tai_Lue Glagolitic
Tifinagh Syloti_Nagri Old_Persian Kharoshthi Ba-
linese Cuneiform Phoenician Phags_Pa Nko Sudanese
Lepcha . . . See Unicode Standard for more.

7 Selected Unicode Properties

c the character c (except metacharacters)
\xhh U+00hh, 2 hexadecimal digits h
\whhhh U+hhhh, 4 hexadecimal digits h
\c the character c
. any character
[0-9] (= ASCII digits)
[a-b] any character in the range a–b
[S] any character in S
[^S] any character not in S
(S) grouping
S* repeat S 0 or more times (max 255)
S+ repeat S 1 or more times (max 255)
S? repeat S 0 or 1 or time
S{n,m} repeat S n–m times (max 255)
ST matches S, then matches T
S|T matches S or T

8 EnCase GREP Syntax

\whhhh �! \xhhhh
�! \d
S* �! S{0,255}
S+ �! S{1,255}

S* and S+ are limited to
255 repetitions by EnCase;
Lightgrep preserves this in
imported patterns.

\w is limited to BMP characters ( U+10000) only.

9 Importing from EnCase into Lightgrep

Some people, when confronted with a problem, think “I know,
I’ll use regular expressions.” Now they have two problems.

—JWZ in alt.religion.emacs, 12 August 1997

Lightgrep Search
for EnCase R�

Fast Search for
Forensics

www.lightgrep.com

Notes & Examples
Characters:
.*?\x00 (= null-terminated string)
\z50\z4B\z03\z04 (= ZIP signature)
\N{EURO SIGN}, \N{NO-BREAK SPACE}
\x{042F} (= CYRILLIC CAPITAL LETTER YA)
\+12\.5% (= escaping metacharacters)

Grouping: Operators bind tightly. Use (aa)+,
not aa+, to match pairs of a’s.
Ordered alternation: a|ab matches a twice in
aab. Left alternatives preferred to right.
Repetition: Greedy operators match as much
as possible. Reluctant operators match as little
as possible. a+a matches all of aaaa; a+?a
matches the first aa, then the second aa.
.+ will (uselessly) match the entire input.
Prefer reluctant operators when possible.

Character classes:
[abc] = a, b, or c
[^a] = anything but a
[A-Z] = A to Z
[A\-Z]

= A, Z, or hyphen (!)
[A-Zaeiou] = capitals

or lowercase vowels
[.+*?\]]

= ., +, *, ?, or]
[Q\z00-\z7F]

= Q or 7-bit bytes
[[abcd][bce]]

= a, b, c, d, or e
[[abcd]&&[bce]]

= b or c
[[abcd]--[bce]]

= a or d
[[abcd]~~[bce]]

= a, d, or e
[\p{Greek}\d]

= Greek or digits
[^\p{Greek}7]
= neither Greek nor 7

[\p{Greek}&&\p{Ll}]
= lowercase Greek

Operators need not be
escaped inside char-
acter classes.

Email addresses: [a-z\d!#$%&’*+/=?^_‘{|}~-][a-z\d!#$%&’*+/=?^_‘{|}~.-]{0,63}
@[a-z\d.-]{1,253}\.[a-z\d-]{2,22}

Hostnames: ([a-z\d]([a-z\d_-]{0,61}[a-z\d])?\.){2,5}[a-z\d][a-z\d-]{1,22}
N. American phone numbers: \(?\d{3}[).-]{0,2}\d{3}[.-]?\d{4}\D
Visa, MasterCard: \d{4}([-]?\d{4}){3}
American Express: 3[47]\d{2}[-]?\d{6}[-]?\d{5}
Diners Club: 3[08]\d{2}[-]?\d{6}[-]?\d{4}
EMF header: \z01\z00\z00\z00.{36}\z20EMF
JPEG: \zFF\zD8\zFF[\zC4\zDB\zE0-\zEF\zFE] Footer: \zFF\zD9
GIF: GIF8[79] Footer: \z00\z3B BMP: BM.{4}\z00\z00\z00\z00.{4}\z28
PNG: \z89\z50\z4E\z47 Footer: \z49\z45\z4E\z44\zAE\z42\z60\z82
ZIP: \z50\z4B\z03\z04 Footer: \z50\z4B\z05\z06
RAR: \z52\z61\z72\z21\z1a\z07\z00...[\z00-\z7F]

Footer: \z88\zC4\z3D\z7B\z00\z40\z07\z00
GZIP: \z1F\z8B\z08 MS O�ce 97–03: \zD0\zCF\z11\zE0\zA1\zB1\z1A\zE1
LNK: \z4c\z00\z00\z00\z01\z14\z02\z00
PDF: \z25\z50\z44\z46\z2D\z31 Footer: \z25\z45\z4F\z46

Figure 15: Guide to Syntax Used by Lightgrep Scanner

31

slow-down.

Investigators looking for identity information may rely heavily on the find list to search
for specific names, numbers or keywords relevant to the investigation. The features
found by the find or lightgrep scanner will be written to the files find.txt and
lightgrep.txt respectively.

5.4 Password Cracking

If an investigator is looking to crack a password, the wordlist scanner can be useful. It
generates a list of all the words found on the disk that are between 6 and 14 characters.
Users can change the minimum and maximum size of words by specifying options at
run-time but we have found this size range to be optimal for most applications. Because
the wordlist scanner is disabled by default, users must specifically enable it at run-time
when needed. To do that, run the following command:

� bulk_extractor -e wordlist -o output mydisk.raw

This will produce two files useful for password cracking, wordlist_histogram.txt and
wordlist.txt. These files will contain large words that can be used to recommend
passwords.

5.5 Analyzing Imagery Information

In an investigator needs to specifically analyze imagery, for something such as a child
pornography investigation, the exif scanner would be useful. It finds JPEGs on the
disk image and then carves the encoded ones that might be in, for example, ZIP files or
hibernation files. It writes the output of this carving to jpeg.txt.

5.6 Using bulk_extractor in a Highly Specialized Environment

If using bulk_extractor in a specialized environment, two specific features might be
useful. The first is the option to include a banner on each output file created by
bulk_extractor . The banner file, specified in the example command below as banner.txt
could include a security classification of the output data. When bulk_extractor is run
with the command specified below, the data in the banner file will be printed at the top
of each output file produced.

� bulk_extractor -b banner.txt -o output mydisk.raw

The second feature might be useful to users in a specialized environment is the ability
to develop plug-ins. Plug-ins in bulk_extractor are external scanners that an individual
or organization can run in addition to the open source capabilities provided with the
bulk_extractor system. The plug-in system gives the full power of bulk_extractor to ex-
ternal developers, as all of bulk_extractor ’s native scanners are written with the plug-in
system. This power gives third party developers the ability to utilize proprietary or secu-
rity protected algorithms and information in bulk_extractor scanners. It is worth noting
that all scanners installed with bulk_extractor use the plug-in system, bulk_extractor is
really just a framework for running plug-ins. The separate publication Programmers
Manual for Developing Scanner Plug-ins [?] provides specific details on how to
develop and use plug-ins with bulk_extractor .

32

Disk Image

pagesize

bufsize

Figure 16: Image Processor divides the disk image into buffers. Each buffer is the size
of a page (pagesize) with a buffer overlap in an area called the margin. (marginsize is
equal to bufsize-pagesize). The buffers overlap with each other to ensure all information
is processed.

6 Tuning bulk_extractor

All data that bulk_extractor processes is divided into buffers called sbufs. Buffers cre-
ated from disk images are created with a pre-determined size (bufsize). The buffer
includes a page and an overlap area. As shown in Figure 16, the pages overlap with
each other in the red region. The red overlap region is called the margin. bulk_extractor
scans the pages one-by-one looking for features. Pages overlap with each other so that
bulk_extractor won’t miss any features that cross from one page into another across
boundaries.

Users may be looking for potentially large features that are bigger than the buffer size
or that overlap into the margin. In that case, they may want to adjust the margin size
or buffer size. For example, if the input data includes a 30 MB ZIP file (possibly a soft-
ware program), bulk_extractor won’t find features in the program because it overlaps
the margins. To find features of that size, the margin size must be increased.

To adjust the page size, the following usage options need to be included where NN should
be set to the size (default page size is 16777216):

� bulk_extractor -G NN -o output mydisk.raw

To adjust the margin size, the following usage options need to be included where NN
should be set to the size (default margin size is 4194304):

� bulk_extractor -g NN -o output mydisk.raw

bulk_extractor provides many other tuning capabilities that are primarily recommended
for users doing advanced research. Many of those options relate to specifying file sizes
for input or output, specifying block sizes, dumping the contents of a buffer or ignoring
certain entries. Those options are all found in the output of the -h input to bulk_extractor
and listed in Appendix A.

7 Post Processing Capabilities

There are two Python programs useful for post-processing the bulk_extractor output.
Those programs are bulk_diff.py and identify_filenames.py. To run either of these
programs, you must have Python version 2.7 or higher installed on your system. On

33

Linux and Mac systems, the bulk_extractor python programs are located in the direc-
tory ./python under the main bulk_extractor installation.

7.1 bulk_diff.py: Difference Between Runs

The program bulk_diff.py takes the results of two bulk_extractor runs and shows the
differences between the two runs. This program essentially tells the difference between
two disk images. It will note the different features that are found by bulk_extractor
between one image and the next. It can be used, for example, to easily tell whether or
not a computer user has been visiting websites they are not supposed to by comparing
a disk image from their computer from one week to the next. To run the program, users
should type the following, where pre and post are both locations of two bulk_extractor
output directories:

� bulk_diff.py <pre> <post>

Note, Linux and Mac users may have to type python2.7, python3, or python3.3
before the command, indicating the version of Python installed on your machine. An
example use of the bulk_diff.py program can be found in Section 8.

7.2 identify_filenames.py: Identify File Origin of Features

The program identify_filenames.py operates on the results of bulk_extractor run and
identifies the filenames (where possible) of the features that were found on the disk im-
age. The user can run this program on one or all of the features file produced by a given
run. It can be used, for example, to find the full content of an email when references to
its contents are found in one of the feature files. Often email features are relevant to an
investigation and an investigator would like to be able to view the full email.

To run this program, users will need the program fiwalk installed on their machine or
have a DFXML file generated by fiwalk that corresponds to the disk image. fiwalk
is part of the SleuthKit and can be installed by installing Sleuthkit, available at
http://www.sleuthkit.org/.

The identify_filenames.py program provides various usage options but to run the
program on all feature files produced by a bulk_extractor run, the user should type
the following (where “bulkoutputdirectory” is the directory containing the output of
a bulk_extractor run and “idoutput” will contain the annotated feature files after the
program runs):

� identify_filenames.py --all bulkoutputdirectory idoutput

Note, Linux and Mac users may have to type python2.7, python3, or python3.3
before the command, indicating the version of Python installed on your machine. An
example use of the bulk_diff.py program can be found in Section 8.

8 Worked Examples

The worked examples provided are intended to further illustrate how to use bulk_extractor
to answer specific questions and conduct investigatons. Each example uses a different,
publicly available dataset and can be replicated by readers of this manual.

34

http://www.sleuthkit.org/

8.1 Encoding

We describe the encoding system here in order to prepare users to view the feature files
produced by bulk_extractor . Unicode is the international standard used by all modern
computer systems to define a mapping between information stored inside a computer
and the letters, digits, and symbols that are displayed on the screens or printed on
paper. UTF-8 is a variable width encoding that can represent every character in the
Unicode character set. It was designed for backward compatibility with ASCII and to
avoid the complications of endianness and byte order marks in UTF-16 and UTF-32.
Feature files in bulk_extractor are all coded in UTF-8 format. This means that the odd
looking symbols, such as accented characters (è), funny symbols (∴) and the occa-
sional Chinese character (�) that may show up in the files are legitimate. Glyphs from
language, for example, Cyrillic (Ш) or Arabic ح)) may show up in features files as all
foreign languages can be coded in UTF-8 format. It is perfectly appropriate and typical
to open up a feature file and see characters that the user may not recognize.

9 2009-M57 Patents Scenario

The 2009-M57-Patents scenario tracks the first four weeks of corporate history of the
(fictional) M57 Patents company. The company started operation on Friday, November
13th, 2009, and ceased operation on Saturday, December 12, 2009. This specific scenario
was built to be used as a teaching tool both as a disk forensics exercise and as a network
forensics exercise. The scenario data is also useful for computer forensics research be-
cause the hard drive of each computer and each computers memory were imaged every
day. In this example, we are not particularly interested in the exercises related to illegal
activity, exfiltration and eavesdropping; they do however provide interesting components
for us to examine in the example data[?].

9.1 Run bulk_extractor with the Data

For this example, we downloaded and utilized one of the disk images from the 2009-
M57-Patents Scenario. Those images are available at http://digitalcorpora.org/
corp/nps/scenarios/2009-m57-patents/drives-redacted/. The file used through-
out this example is called charlie-2009-12-11.E01. Running bulk_extractor on the
command line produces the following output (text input by the user is bold):

C:\bulk_extractor>bulk_extractor -o ../Output/charlie-2009-12-11 charlie-2009-12-11.E01

bulk_extractor version: 1.4.0
Input file: charlie-2009-12-11.E01
Output directory: ../Output/charlie-2009-12-11
Disk Size: 10239860736
Threads: 4
8:02:08 Offset 67MB (0.66%) Done in 1:21:23 at 09:23:31
8:02:34 Offset 150MB (1.47%) Done in 1:05:18 at 09:07:52
8:03:03 Offset 234MB (2.29%) Done in 1:01:39 at 09:04:42
8:03:49 Offset 318MB (3.11%) Done in 1:09:19 at 09:13:08

...
9:06:23 Offset 10049MB (98.14%) Done in 0:01:13 at 09:07:36
9:06:59 Offset 10133MB (98.96%) Done in 0:00:41 at 09:07:40
9:07:29 Offset 10217MB (99.78%) Done in 0:00:08 at 09:07:37

All data are read; waiting for threads to finish...

35

http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/
http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/

Time elapsed waiting for 4 threads to finish:
(timeout in 60 min .)

Time elapsed waiting for 3 threads to finish:
7 sec (timeout in 59 min 53 sec.)

Thread 0: Processing 10200547328
Thread 2: Processing 10217324544
Thread 3: Processing 10234101760

Time elapsed waiting for 2 threads to finish:
13 sec (timeout in 59 min 47 sec.)

Thread 0: Processing 10200547328
Thread 2: Processing 10217324544

All Threads Finished!
Producer time spent waiting: 3645.8 sec.
Average consumer time spent waiting: 3.67321 sec.

** bulk_extractor is probably CPU bound. **
** Run on a computer with more cores **
** to get better performance. **

Phase 2. Shutting down scanners
Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...
ip histogram... lightgrep histogram... tcp histogram...
telephone histogram... url histogram... url microsoft-live...
url services... url facebook-address... url facebook-id...
url searches...Elapsed time: 3991.77 sec.

Overall performance: 2.56524 MBytes/sec
Total email features found: 15277

All of the results from the bulk_extractor run are stored in the output directory charlie-
2009-12-11. The contents of that directory after the run include the feature files, his-
togram files and carved output. Figure 17 is a screenshot of the Windows output
directory. Additionally, the following output shows a list of the files, directories and
their sizes under Linux:
C:\bulk_extractor\charlie-2009-12-11>ls -s -F

1 aes_keys.txt 0 kml.txt
0 alerts.txt 0 lightgrep.txt
4 ccn.txt 0 lightgrep_histogram.txt
1 ccn_histogram.txt 196 packets.pcap
0 ccn_track2.txt 1 rar.txt
0 ccn_track2_histogram.txt 108 report.xml

23028 domain.txt 3728 rfc822.txt
192 domain_histogram.txt 20 tcp.txt
0 elf.txt 4 tcp_histogram.txt

1696 email.txt 60 telephone.txt
36 email_histogram.txt 8 telephone_histogram.txt
24 ether.txt 70108 url.txt
1 ether_histogram.txt 1 url_facebook-address.txt

508 exif.txt 0 url_facebook-id.txt
0 find.txt 6684 url_histogram.txt
0 find_histogram.txt 0 url_microsoft-live.txt
0 gps.txt 12 url_searches.txt
0 hex.txt 156 url_services.txt
32 ip.txt 0 vcard.txt
4 ip_histogram.txt 16432 windirs.txt
12 jpeg/ 20800 winpe.txt

504 jpeg.txt 1864 winprefetch.txt

36

Figure 17: Screenshot from Windows Explorer of the Output Directory Created by
the bulk_extractor run

37

1896 json.txt 29624 zip.txt

Many of the feature files and histograms are populated with data. Additionally, there
were some JPEG files carved and placed in the jpeg directory. In the following sections,
we demonstrate how to look at these results to discover more information about the disk
user and the files contained on the disk image.

9.2 Digital Media Triage

Digital media triage is the process of using the results of a rapid and automated analysis
of the media, performed when the media is first encountered to determine if the media
is likely to have information of intelligence value and, therefore, should be prioritized
for immediate analysis. bulk_extractor performs bulk data analysis to help investiga-
tors quickly decide which piece of digital media is the most relevant and useful to an
investigation. Thus, bulk_extractor can be used to aid in investigations (through the
identification of new leads and social networks) rather than just aiding in conviction-
support (through the identification of illegal materials)[?].

In this example, we look at the charlie-2009-12-11.E01 image to quickly assess what
kinds of information useful to an investigation might be present on the disk. For the
purposes of this example, we will assume we are investigating corporate fraud and trying
to discover the answers to the following questions:

• Who are the users of the drive?

• Who is this person communicating with?

• What kinds of websites have they have been visiting most often?

• What search terms are used?

To answer many of these questions, we look at the identify information on the drive
including email addresses, credit card information, search terms, Facebook IDs, domain
names and vCard data. The output files created by bulk_extractor contain all of this
type of information that was found on the disk image.

The scenario setup leads us to believe that Charlie is the user of the this drive (based on
the name of the disk image). First, we look at email.txt to find information about the
email addresses contained on the disk. The first two lines of the email features found are
the following (each block of text represents one long line of offset, feature and context):

50395384 n\x00o\x00m\x00b\x00r\x00e\x00_\x001\x002\x003\x00@\x00h\x00o\x00t
\x00m\x00a\x00i\x00l\x00.\x00c\x00o\x00m\x00 e\x00m\x00p\x00l\x00o\x00\x00\x0A\x00
\x09\x00n\x00o\x00m\x00b\x00r\x00e\x00_\x001\x002\x003\x00@\x00h\x00o\x00t\x00m
\x00a\x00i\x00l\x00.\x00c\x00o\x00m\x00\x0A\x00\x09\x00m\x00i\x00n\x00o\x00m\x00b\x00

50395432 m\x00i\x00n\x00o\x00m\x00b\x00r\x00e\x00@\x00m\x00s\x00n\x00.\x00c
\x00o\x00m\x00 i\x00l\x00.\x00c\x00o\x00m\x00\x0A\x00\x09\x00m\x00i\x00n\x00o\x00m
\x00b \x00r\x00e\x00@\x00m\x00s\x00n\x00.\x00c\x00o\x00m\x00\x0A\x00\x09\x00e\x00j
\x00e\x00m\x00p\x00l\x00

It is important to note that UTF-16 formatted text is escaped with \x00. This means
that "\x00t \x00e \x00x \x00t" translates to "text." The first two features found
are "nombre_123@hotmail.com" and "minombre@msn.com." Both of the offset values,
50395384 and 50395432, are early on the disk. At this point, there is no way to know

38

if either of these email addresses are of any significance unless they happen to belong
to a suspect or person related to the investigation. The first set of email features found
appear on the disk printed in UTF-16 formatted text, like the lines above.

Further down in the feature file, we find the following:

9263459 charlie@m57.biz 21)(88= Charlie <charlie@m57.biz >)(89\ x0D\x0A =Pat
9263497 pat@m57.biz =Pat McGoo <pat@m57.biz >)(8B=WELCOME TO

Finding Charlie’s email address on the computer begins to further confirm the assump-
tion that this is his computer. The email_histogram.txt file provides important infor-
mation. It shows the most frequently occurring email addresses found on the disk. The
following is an excerpt from that top of that file:

n=875 mozilla@kewis.ch (utf16 =3)
n=651 charlie@m57.biz (utf16 =120)
n=605 ajbanck@planet.nl
n=411 mikep@oeone.com
n=395 belhaire@ief.u-psud.fr
n=379 premium -server@thawte.com (utf16 =11)
n=356 lilmatt@mozilla.com
n=312 cedric.corazza@wanadoo.fr

This histogram output shows us that Charlie’s email address is the second most fre-
quently occurring name on the disk. It would likely be the first but, as described in
the scenario description, this company has only been in business for three weeks and
its employees are new users of the computers. Looking at this histogram file also gives
us some insight into who the user of this disk is communicating with. Those email
addresses occurring most frequently that are not part of the software installed on the
machine (such as ajbanck@planet.nl) might indicate addresses of people with whom the
drive user is corresponding or they may result from other software or web pages that
were downloaded. (In this case, the email is from a Firefox extension.)

The file domain.txt provides a list of all the "domains" and host names that were
found. The sources include URLS, email and dotted quads. Much of the beginning of
the feature file is populated with microsoft.com domains. This is largely due to the fact
that the disk image is from a Windows machine. Further down in the file we find the
following:

53878576 www.uspto.gov <a href="http :// www.uspto.gov/patft/index.htm
53879083 www.uspto.gov <A HREF="http :// www.uspto.gov/patft/help/help
53880076 ebiz1.uspto.gov <A HREF="http :// ebiz1.uspto.gov/vision -service/
53880536 ebiz1.uspto.gov <A HREF="http :// ebiz1.uspto.gov/vision -service/

The domains that were found make sense given that the disk image was obtained from a
startup company that deals with patents. Many of the domains found in the file are also
in UTF-16 format (with "escaped" characters). It is also worth noting as users browse
the domain output file that domains are common in compressed data.

The domain_histogram.txt file provides a histogram of the domains found on the
disk image. It tends to give us better information for digital media triage than the
domain.txt file as it provides information about which domains most frequently appear
on the disk image and not just the order in which they were found. The beginning of
the histogram file looks like the following:

39

n=10749 www.w3.org
n=6670 chroniclingamerica.loc.gov
n=6384 openoffice.org
n=5998 www.uspto.gov
n=5733 www.mozilla.org
n=5212 www.osti.gov
n=4952 www.microsoft.com
n=4470 patft.uspto.gov

Many of these domains are part of the operating system, such as openoffice.org, but
some are not, such as www.uspto.gov. The histogram file provides insight into the users
activity on the machine and which sites they were most frequently visiting.

The file rfc822.txt primarily provides email headers and HTTP headers both of which
are in a format specified by RFC822, the Internet Message Standard. It can be useful
to see the subject of emails that have been sent and information form HTTP requests.
The following is an excerpt from the text file:

114074196 SUBJECT:softabs ll|micro)\x5CW?cap\x00SUBJECT:softabs\x00SUBJECT:Caili
114074212 SUBJECT:Cailis SUBJECT:softabs\x00SUBJECT:Cailis\x00\x00SUBJECT:st0ck
114074228 SUBJECT:st0ck SUBJECT:Cailis\x00\x00SUBJECT:st0ck\x00\x00\x00SUBJECT:Your
114074244 SUBJECT:Your Personal Quarantine Folder
SUBJECT:st0ck\x00\x00\x00SUBJECT:Your Personal Quarantine Folder\x00SUBJECT:rolex\x00
114074284 SUBJECT:rolex arantine Folder\x00SUBJECT:rolex\x00\x00\x00SUBJECT :(bro

Much of what is found in the file shown above are spam messages.

Telephone numbers found on the disk image are stored in telephone.txt. This follow-
ing numbers found in the file are clearly for technical support (found within installed
software):

88850883 (800) 563 -9048 rmation centre: (800) 563 -9048\ x0D\x0A
<i>Tech
88850995 (905) 568 -4494 indows ;95: (905) 568 -4494\ x0D\x0A
 Microsoft
88851056 (905) 568 -2294 ice components: (905) 568 -2294\ x0D\x0A
 Other sta
88851111 (905) 568 -3503 hnical support: (905) 568 -3503\ x0D\x0A
 Priority
88851162 (800) 668 -7975 rt information: (800) 668 -7975\ x0D\x0A
 Text Tele

The next set of "telephone" numbers are clearly bogus numbers:

3649684174 008 -017 -0108 WA ,98366 ,1 ,4031 -008 -017 -0108 , City of Port Or
3649684741 000 -031 -0009 98337 ,0.13 ,3768 -000 -031 -0009 , Kitsap County C
3649818237 000 -001 -0005 8312 ,2.25 ,"3768 -000 -001 -0005 , 3768 -000 -003 -0
3649818274 000 -004 -0002 0-003-003, 3768 -000 -004 -0002 , 3768 -000 -005 -0

Finally, many of the numbers found are legitimate ones. These numbers were all found
in GZIP compressed data:

3772517888 - GZIP -28322 (831) 373 -5555 onterey - <nobr >(831) 373 -5555 </nobr >
<a cl
3772517888 - GZIP -29518 (831) 899 -8300 Seaside - <nobr >(831) 899 -8300 </nobr >
<a cl
3772517888 - GZIP -31176 (831) 899 -8300 Seaside - <nobr >(831) 899 -8300 </nobr >
<a cl

Typically, the file telephone_histogram.txt is the best place to look for phone num-
bers. In this file, the non-digits are extracted from the phone numbers. The following
is an excerpt from the beginning of that file:

n=42 +14159618830
n=35 8477180400
n=24 +27112570000
n=24 2225552222

40

n=18 8005043248
n=15 2225551111
n=13 8662347350
n=12 8772768437
n=11 2522277013

Investigators looking for specific information about the user of a disk image or who
they have been communicating with can look quickly at this file and see how frequently
numbers appear. It also consolidates the numbers in a way that makes it easy for inves-
tigators looking for a specific number or set of numbers to see them quickly.

Finally, in performing digital media triage on the disk image, investigators would like
to know what specific URLs have been visited and what search terms the user has been
using. The set of URL files provided as output provide insight into this information.
First, url.txt contains the URLs found on the disk. The following is an excerpt from
that file (note that the UTF-16 formatted information is escaped):

175165385 http ://www.unicode.org/reports/tr25/# _TocDelimiters E and U+23DF:\x0A#
http ://www.unicode.org/reports/tr25/# _TocDelimiters\x0A\x5Cu23DE = \x5CuE13B

159045397 h\x00t\x00t\x00p\x00:\x00/\x00/\x00w\x00w\x00w\x00.\x00d\x00o\x00w
\x00n\x00l\x00o\x00a\x00d\x00.\x00w\x00i\x00n\x00d\x00o\x00w\x00s\x00u\x00p
\x00d\x00a\x00t\x00e\x00.\x00c\x00o\x00m\x00/\x00m\x00s\x00d\x00o\x00w\x00n\x00l\x00o
\x00a\x00d\x00/\x00u\x00p\x00d\x00a\x00t\x00e\x00/\x00s\x00o\x00f\x00t\x00w\x00a\x00r
\x00e\x00/\x00s\x00e\x00c\x00u\x00/\x002\x000\x000\x008\x00/\x000\x006\x00/\x00w\x00i
\x00n\x00d\x00o\x00w\x00s\x00x\x00p\x00 -\x00k\x00b\x009\x005\x001\x003\x007\x006\x00 -
\x00v\x002\x00 -\x00x\x008\x006\x00 -\x00e\x00n\x00u\x00_\x00e\x009\x00b\x006\x008\x00c
\x005\x00e\x006\x003\x00a\x00c\x00b\x005\x007\x008\x006\x00a\x000\x005\x00b\x005\x003
\x00b\x004\x00 \xB4\xF4\x82\x94C\xE3\xB6C\xB1p\x9Ae\xBC\x82 ,wh\x00t\x00t\x00p\x00:
\x00/\x00/\x00w\x00w\x00w\x00.\x00d\x00o\x00w\x00n\x00l\x00o\x00a\x00d\x00.\x00w
\x00i\x00n\x00d\x00o\x00w\x00s\x00u\x00p\x00d\x00a\x00t\x00e\x00.\x00c\x00o
\x00m\x00/\x00m\x00s\x00d\x00o\x00w\x00n\x00l\x00o\x00a\x00d\x00/\x00u\x00p\x00d
\x00a\x00t\x00e\x00/\x00s\x00o\x00f\x00t\x00w\x00a\x00r\x00e\x00/\x00s\x00e\x00c\x00u
\x00/\x002\x000\x000\x008\x00/\x000\x006\x00/\x00w\x00i\x00n\x00d\x00o\x00w\x00s\x00x
\x00p\x00 -\x00k\x00b\x009\x005\x001\x003\x007\x006\x00 -\x00v\x002\x00 -\x00x\x008\x006
\x00 -\x00e\x00n\x00u\x00_\x00e\x009\x00b\x006\x008\x00c\x005\x00e\x006\x003\x00a\x00c
\x00b\x005\x007\x008\x006\x00a\x000\x005\x00b\x005\x003\x00b\x004\x003\x003\x002\x004
\x006\x005\x00d\x00e\x00

175197993 http ://www.uspto.gov/patft/index.html enter >\x0A <a href="http ://www.
uspto.gov/patft/index.html"><img src="/net

175198500 http ://www.uspto.gov/patft/help/help.htm e>\x0A <AHREF="http :// www.
uspto.gov/patft/help/help.htm"><IMG BORDER ="0

The file url_histogram.txt provides the histogram of the potential urls. In that file,
UTF-16 formatted text is converted to UTF-8. Note that not all URLs contained in the
histogram file are accurate. The are actually URLs that were typed into a web browser.
The following are lines taken from that file:

n=3922 http ://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul (utf16 =2609)
n=859 http ://www.mozilla.org/keymaster/gatekeeper/there.is.only.xu (utf16 =858)
...
n=2 http :// math.nist.gov/~ KRemington/papers/europvm.ps
n=2 http :// math.nist.gov/~ MDonahue/pubs/nan.ps.gz
n=2 http :// math.nist.gov/~ RBoisvert/publications/ADL95.ps.gz
n=2 http :// math.nist.gov/~ RBoisvert/publications/IMACS97.ps.gz

41

Because the histogram file converts the UT-16 formatted text to UTF-8, the histogram
file is more human readable than the url.txt file alone. The files url_facebook.txt,
url_microsoft-live, url_services and url_searches all extract specific types of
information from URLs. The most useful for digital media triage is likely the file
url_searches.txt because it shows histogram of searches from the disk image. Searches
frequently convey intent. The following is an excerpt from that file:

n=60 1
n=53 exotic+car+dealer
n=41 ford+car+dealer
n=34 2009+ Shelby
n=25 steganography
n=23 General+Electric
n=23 time+travel
n=19 steganography+tool+free
n=19 vacation+packages
n=16 firefox
n=16 quicktime
n=14 7zip

The file ccn.txt provides credit card numbers that have been found on the disk. Based
on the scenario set-up for this disk image, credit card numbers are not necessarily highly
relevant to this investigation. However, bulk_extractor did find some credit card num-
bers on this disk image that are not actually credit card numbers; This is common
behavior so it is worth examining the file here to demonstrate how it can be used in
other investigations. The credit card number finder considers a pattern of digits and
uses the Luhn checksum algorithm and the distribution of digits and the local context to
identify potential credit card numbers. It is important to note that there are frequently
false positives. The first few lines of the ccn.txt file for this disk image look like the
following:

88284672 -GZIP -177427 5273347458642687 734 B55CD5\x0A5273347458642687\x0AC0841BAFA1B4C28
4814857216 - GZIP -793 4015751530102097 ebO.d=0;ebO.rnd =4015751530102097; ebO.title ="";eb
4909069775 6543210123456788 \x0Addadd7540 add ’6543210123456788 ’ 0.499999999
4909069811 6543210123456788 499999999 -> ’6543210123456788 ’ Inexact Rounde
4909069861 6543210123456788 \x0Addadd7541 add ’6543210123456788 ’ 0.5
4909069897 6543210123456788 5 -> ’6543210123456788 ’ Inexact Rounde
4909069947 6543210123456788 \x0Addadd7542 add ’6543210123456788 ’ 0.500000001
5304221350 5678901234560000 +4 -> 5678901234560000\ x0D\x0Addshi052 shift
5612375618 6543210123456788 \x0D\x0Aaddx6240 add ’6543210123456788 ’ 0.499999999
5612375654 6543210123456788 499999999 -> ’6543210123456788 ’ Inexact Rounde
5612375703 6543210123456788 \x0D\x0Aaddx6241 add ’6543210123456788 ’ 0.5
5612375739 6543210123456788 5 -> ’6543210123456788 ’ Inexact Rounde
5612375788 6543210123456788 \x0D\x0Aaddx6242 add ’6543210123456788 ’ 0.500000001
5612715901 5700122152274696 div4036 divide 5700122152274696 5700122152251

In the above example, ‘525273347458642687’ looks like it could be a valid credit card
number from the context (\x0A is a new line). The number ‘4015751530102097’ looks
like a random number in a piece of Java Script. Note that both of those numbers were
compressed; the offset indicates they were found in GZIP streams (shown as a number
followed by ‘-GZIP’). The numbers whose context include “Inexact Rounde” are actually
from Python source code and not credit card numbers at all. Again, the ccn.txt tends
to alert on a lot of false positives.

The ccn_track2.txt file did not find any information in this disk image but is also
useful for credit card fraud and identity theft investigations. It will contain credit card

42

track 2 information found on the disk image.

Using the files produced by bulk_extractor described above, an investigator can quickly
review a disk image for important information that is relevant to an investigation and
find actionable intelligence quickly.

9.3 Analyzing Imagery

The scenario described in the M57 Patents data is not necessarily relevant to an imagery
investigation. However, there is imagery information on the disk. We use that informa-
tion here to demonstrate how imagery information can be analyzed by an investigator
using bulk_extractor .

The file in the output directory, jpeg.txt, lists all JPEGs that were found on the disk
whether they were carved or not. bulk_extractor was run with default values meaning
that only encoded JPEGs were carved. The following excerpt from the JPEG file shows
information about JPEGs found on the disk image:

54798824 ../ Output/charlie -2009 -12 -11/ jpeg /54783488. jpg <fileobject ><filename >
../ Output/charlie -2009 -12 -11/ jpeg /54783488. jpg </filename ><filesize >15336 </ filesize >
<hashdigest type=’md5 ’ >13823 ce7c21587d31f6eb4474612e660
</hashdigest ></fileobject >

The JPEG described above was not carved because it was not encoded. However, the first
section “../Output/charlie-2009-12-11/jpeg/54783488.jpg” shows where the file would be
found in the output directories if it had been carved. The next section of information
also gives the file size, the hash type (in this case ‘md5’) and the hash value of the file
(in this case 13823ce7c21587d31f6eb4474612e660). Note that this may not match the
hash value of the file in the original file system as bulk_extractor cannot properly carve
fragmented files.

Information about encoded JPEGs can also be found in the jpeg.txt file. The following
excerpt shows a description of a JPEG found in a GZIP format on the disk:

3771686400 - GZIP -8332 ../ Output/charlie -2009 -12 -11/ jpeg /3771686400 - GZIP -0. jpg
<fileobject ><filename >../ Output/charlie -2009 -12 -11/ jpeg /3771686400 - GZIP -0.jpg
</filename ><filesize >8332 </ filesize ><hashdigest type=’md5 ’>
5b77035c983b04996774370f735ea72a </hashdigest ></fileobject >

The JPEG described above was carved and can be found in the /jpeg output directory
in the file named 3771686400-GZIP-0.jpg. The file also gives information about the
filesize, hash type and hash ID. That file is shown in the directory output shown below
along with all of the encoded JPEGs that were found on the disk image and were carved.
The contents of the /jpeg directory are as follows:

10037939712-GZIP-0.jpg 5324841013-ZIP-0.jpg
10117679783-ZIP-0.jpg 6039195136-GZIP-0.jpg
3761630720-GZIP-0.jpg 6039215616-GZIP-0.jpg
3764534784-GZIP-0.jpg 6039223808-GZIP-0.jpg
3771686400-GZIP-0.jpg 6039232000-GZIP-0.jpg
3771706880-GZIP-0.jpg 6039244288-GZIP-0.jpg
3771715072-GZIP-0.jpg 6039301632-GZIP-0.jpg
3771723264-GZIP-0.jpg 6039318016-GZIP-0.jpg
3771735552-GZIP-0.jpg 6883925636-ZIP-0.jpg
3771792896-GZIP-0.jpg 6884040324-ZIP-0.jpg
3771809280-GZIP-0.jpg 6884056948-ZIP-0.jpg

43

Figure 18: A JPEG carved from encoded data on the M57 Patents disk image

3771833856-GZIP-0.jpg 7276064256-GZIP-0.jpg
3771858432-GZIP-0.jpg 7279128576-GZIP-0.jpg
429788672-GZIP-0.jpg 8877243047-ZIP-0.jpg
5310405287-ZIP-0.jpg 9948655104-GZIP-0.jpg

All of these JPEG files can be viewed and used by investigators. The filename is the
forensic path of where the JPEG was found. The file 3771686400-GZIP-0.jpgmentioned
above is shown in Figure 18.

9.4 Password Cracking

The wordlist generates a list of all the words found on the disk that are between 6 and
14 characters long. The word list that is generated by the scanner can be very useful in
determining combinations of words to use for password cracking. The scanner is enabled
by default because it slows down the bulk_extractor run significantly. To show the word
list in this example, bulk_extractor was run again on the M57 Patents scenario data
with the wordlist scanner enabled. Running bulk_extractor on the command line with
it enabled produces the following output:
C:\be\>bulk_extractor -e wordlist -o ../Output/charlie-wordlist charlie-2009-12-11.E01

bulk_extractor version: 1.4.0
Input file: charlie-2009-12-11.E01
Output directory: ../Output/charlie-wordlist
Disk Size: 10239860736
Threads: 4
12:58:46 Offset 67MB (0.66%) Done in 1:14:55 at 14:13:41
...
14:03:24 Offset 10217MB (99.78%) Done in 0:00:08 at 14:03:32
All data are read; waiting for threads to finish...
Time elapsed waiting for 4 threads to finish:

(timeout in 60 min .)
Time elapsed waiting for 4 threads to finish:

8 sec (timeout in 59 min 52 sec.)
Thread 0: Processing 10200547328
Thread 1: Processing 10234101760
Thread 2: Processing 10183770112
Thread 3: Processing 10217324544

Time elapsed waiting for 1 thread to finish:
14 sec (timeout in 59 min 46 sec.)

Thread 3: Processing 10217324544

All Threads Finished!
Producer time spent waiting: 3627.92 sec.
Average consumer time spent waiting: 4.1518 sec.

** bulk_extractor is probably CPU bound. **
** Run on a computer with more cores **

44

** to get better performance. **

Phase 2. Shutting down scanners
Phase 3. Uniquifying and recombining wordlist
Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...
ip histogram... lightgrep histogram... tcp histogram...
telephone histogram... url histogram... url microsoft-live...
url services... url facebook-address... url facebook-id
url searches...Elapsed time: 4065.09 sec.

Overall performance: 2.51898 MBytes/sec
Total email features found: 152775

Note that it took 3991.71 seconds to run bulk_extractor without the wordlist scanner
enabled and, in this case, it took 4065.09 seconds with wordlist enabled. The new
output directory contains a file called wordlist.txt. That file has both filenames and
words in it. The following is an excerpt from that file:

50497556 usemodem.jpg
50497624 usemsn.jpg
50497692 usemsnnow.jpg
50497760 welcome.htm
50497828 whereNow.htm
50497896 xmlutil.js
50497987 ^Photoshop
50498009 Resolution
50498050 Global
50498057 Lighting
50498090 Global
50498097 Altitude
50498153 Copyright
50498181 Japanese
50498229 Halftone
50498238 Settings
50498335 Transfer

The wordlist contains ALL words found on the disk between 6 and 14 characters long.
Automated programs can be used to generate passwords from combinations of these
words. The wordlist scanner also generates a split wordlist containing the same words
found in the wordlist.txt file with all words deduplicated, sorted by size and alpha-
betized. The following is an excerpt from the file wordlist_split_000.txt generated
from the disk image:

concluded |1
concluder /2
concluder/M
concluir/XQ
conclurai/x
conclusion ,
conclusion.
conclusione
conclusions
conclusive ,

The split wordlist is the file that is typically fed to password cracking software.

45

9.5 Post Processing

The programs identify_filenames.py and bulk_diff.py can provide further insight
into the data contained on the disk image. The identify_filenames.py program can
be used on the feature files produced from the bulk_extractor run to show the file lo-
cation of the features that were found. Running the program on all of the feature files
produced by the bulk_extractor run produces the following output (where charlie-2009-
12-11 is the bulk_extractor output directory and charlieAnnotatedOutput is where all
the annotated files are written):

C:\be\>identify_filenames.py –all charlie-2009-12-11 charlieAnnotatedOutput

Reading file map by running fiwalk on charlie-2009-12-11.E01
Processed 1000 fileobjects in DFXML file
Processed 2000 fileobjects in DFXML file
...
Processed 39000 fileobjects in DFXML file
Processed 40000 fileobjects in DFXML file
feature_file: aes_keys.txt
feature_file: ccn.txt
feature_file: domain.txt
feature_file: email.txt
feature_file: ether.txt
feature_file: exif.txt
feature_file: ip.txt
feature_file: jpeg.txt
feature_file: json.txt
feature_file: rar.txt
feature_file: rfc822.txt
feature_file: telephone.txt
feature_file: url.txt
feature_file: windirs.txt
feature_file: winpe.txt
feature_file: winprefetch.txt
feature_file: zip.txt

** Total Features: 754038 **
** Total Located: 754038 **

Note, in this example that fiwalk is installed on the computer running the iden-
tify_filenames.py program. The directory charlieAnnotatedOutput contains all of the
annotated feature files, showing the file location of the features. The directory contents
are as follows:

annotated_aes_keys.txt annotated_rar.txt
annotated_ccn.txt annotated_rfc822.txt
annotated_domain.txt annotated_telephone.txt
annotated_email.txt annotated_url.txt
annotated_ether.txt annotated_windirs.txt
annotated_exif.txt annotated_winpe.txt
annotated_ip.txt annotated_winprefetch.txt
annotated_jpeg.txt annotated_zip.txt
annotated_json.txt

The annotated files display the feature with the file in which the feature was found (where
it was identified by the program). The following is an excerpt from the annotated_email.txt
file:

27767966 pat@m57.biz m: "Pat McGoo" <pat@m57.biz >\x0D\x0ATo: <charlie@ Documents

46

and Settings/Charlie/Application Data/Thunderbird/Profiles /4 zy34x9h.default/Mail/Local
Folders/Inbox dcb794e350bd198c4279614eae6c8b76

27767985 charlie@m57.biz @m57.biz >\x0D\x0ATo: <charlie@m57.biz >,\x0D\x0A\x09 <jo@m
57. biz Documents and Settings/Charlie/Application Data/Thunderbird/Profiles /4 zy34x9h.
default/Mail/Local Folders/Inbox dcb794e350bd198c4279614eae6c8b76

27768022 terry@m57.biz jo@m57.biz >,\x0D\x0A\x09 <terry@m57.biz >\x0D\x0AX -ASG -Orig -
Su Documents and Settings/Charlie/Application Data/Thunderbird/Profiles /4 zy34x9h.def
ault/Mail/Local Folders/Inbox dcb794e350bd198c4279614eae6c8b76

The email address "pat@m57biz" was found in the file Documents and Settings/Charlie/
Application Data/Thunderbird/Profiles/4zy34x9h.default/Mail/Local Folders/Inbox
and investigators can refer to that location on the disk image to view the full text.

The program bulk_diff.py shows the difference between two bulk_extractor runs. In
this case, we used a disk image from the same user ("charlie") taken almost a month be-
fore the disk image that has been used throughout this example. The disk image we have
been using throughout this example is dated December 11, 2009. The older disk image
we downloaded for comparison is dated November 17, 2009. The earlier disk image data
is stored in a file named charlie-2009-11-17.E01 and can be downloaded from http://
digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/.

After running bulk_extractor using the earlier disk image, we ran the program bulk_diff.py
on the output of that disk image and on the output of the charlie-2009-12-11.E01
run. To run, we typed the following, piping the output of the program to a file called
bulkdiffoutput.txt:

� bulk_diff.py /charlie-2009-11-17 /charlie-2009-12-11 > bulkdiffoutput.txt

The output shows the features differences on the disk image. The following is an excerpt
of that output:
domain_histogram.txt:

#in PRE #in POST Value
--
401 4,470 4,069 patft.uspto.gov
181 3,151 2,970 www.wipo.int
295 3,157 2,862 www.google.com
0 2,537 2,537 l.yimg.com

The output specifically shows the differences in the histograms between the two runs
across all of the histogram files that were created. The excerpt above shows that "charlie"
(the disk user) visited the domain "patft.uspto.gov" frequently between the time the two
images were recorder. It was found 4,069 more times in the later disk image than in
the one taken earlier. It also shows that the domain "l.yimg.com" was not found on the
earlier disk image but was found 2,537 times on the later disk image. The results are
sorted by the amount of the difference. This means that features that are most different
appear first. This can be very helpful because those features generally give the most
insight into the disk users activity over that period of time.

10 NPS DOMEX Users Image

NPS Test Disk Images are a set of disk images that have been created for testing com-
puter forensic tools. These images are free of non-public Personally Identifiable Infor-

47

http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/
http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/

mation (PII) and are approved for release to the general public. The NPS-created data
in the images is public domain and free of any copyright restriction; the images may
contain some copyrighted data that was made available by the copyright holder. These
copyrights, where known, are noted in the files themselves[?].

The NPS DOMEX users image is a disk image of a Windows XP SP3 system that has two
users, domexuser1 and domexuser2, who communicate with a third user (domexuser3)
via IM and email. The data is available for download at http://digitalcorpora.org/
corp/nps/drives/nps-2009-domexusers/. For this example, we use the file nps-2009-domexusers.E01
which includes the full system including the Microsoft Windows executables. Running
bulk_extractor on the command line produces the following output:

C:\be\>bulk_extractor -o ../Output/nps-2009-domexusers nps-2009-domexusers.E01

bulk_extractor version: 1.4.0
Input file: nps-2009-domexusers.E01
Output directory: ../Output/nps-2009-domexusers2
Disk Size: 42949672960
Threads: 4
16:50:53 Offset 67MB (0.16%) Done in 4:23:43 at 21:14:36
16:51:19 Offset 150MB (0.35%) Done in 3:58:37 at 20:49:56
...
16:13:12 Offset 42849MB (99.77%) Done in 0:00:11 at 16:13:23
16:13:13 Offset 42932MB (99.96%) Done in 0:00:01 at 16:13:14
All data are read; waiting for threads to finish...
Time elapsed waiting for 3 threads to finish:

(timeout in 60 min .)
Time elapsed waiting for 1 thread to finish:

6 sec (timeout in 59 min 54 sec.)
Thread 0: Processing 42932895744

Time elapsed waiting for 1 thread to finish:
12 sec (timeout in 59 min 48 sec.)

Thread 0: Processing 42932895744

All Threads Finished!
Producer time spent waiting: 4254.07 sec.
Average consumer time spent waiting: 89.309 sec.

** bulk_extractor is probably CPU bound. **
** Run on a computer with more cores **
** to get better performance. **

Phase 2. Shutting down scanners
Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...
ip histogram... lightgrep histogram... tcp histogram...
telephone histogram... url histogram... url microsoft-live...
url services... url facebook-address... url facebook-id...
url searches...Elapsed time: 4846.74 sec.

Overall performance: 8.86156 MBytes/sec
Total email features found: 8774

All of the results from the bulk_extractor run are stored in the output directory nps-
2009-domex. The contents of that directory after the run are as follows:

1 aes_keys.txt 1 kml.txt
0 alerts.txt 0 lightgrep.txt
1 ccn.txt 0 lightgrep_histogram.txt

48

http://digitalcorpora.org/corp/nps/drives/nps-2009-domexusers/
http://digitalcorpora.org/corp/nps/drives/nps-2009-domexusers/

1 ccn_histogram.txt 4 packets.pcap
0 ccn_track2.txt 1 rar.txt
0 ccn_track2_histogram.txt 424 report.xml

7364 domain.txt 536 rfc822.txt
44 domain_histogram.txt 1 tcp.txt
0 elf.txt 1 tcp_histogram.txt

1528 email.txt 48 telephone.txt
32 email_histogram.txt 4 telephone_histogram.txt
1 ether.txt 51888 url.txt
1 ether_histogram.txt 0 url_facebook-address.txt

152 exif.txt 0 url_facebook-id.txt
0 find.txt 1240 url_histogram.txt
0 find_histogram.txt 0 url_microsoft-live.txt
0 gps.txt 4 url_searches.txt
0 hex.txt 32 url_services.txt
4 ip.txt 0 vcard.txt
1 ip_histogram.txt 15228 windirs.txt
20 jpeg/ 26516 winpe.txt
380 jpeg.txt 1312 winprefetch.txt
316 json.txt 1956 zip.txt

For this example, we will focus on the files that are most important to malware inves-
tigations and cyber investigations, showing how those files can be interpreted and used
by investigators.

10.1 Malware Investigations

In a malware investigation, investigators are looking for information about program-
matic intrusions. In this example, we examine all files that provide information about
executables, Windows directory entries and information downloaded from web-based
applications. We recommend that "-e xor" be enabled for malware investigations.

The file windirs.txt provides information about FAT32 and NTFS directories. It con-
tains most of the disk entries. The following is an excerpt showing one line from the
file:

281954816 A0001801.dll <fileobject
src=’mft ’><atime >2008 -10 -21 T00 :45:51Z</atime ><attr_flags >8224 </ attr_flags >
<crtime >2008 -10 -21 T00 :45:51Z</crtime ><ctime >2008 -10 -21 T00 :45:51Z</ctime >
<filename >A0001801.dll </filename ><filesize >1000000000000 </ filesize ><filesize_alloc >
0</filesize_alloc ><lsn >123437339 </lsn ><mtime >2008 -10 -21 T00 :45:51Z</mtime >
<nlink >1</nlink ><par_ref >12017 </ par_ref ><par_seq >3</par_seq ><seq >1</seq >
</fileobject >

The line from the file gives information about the disk entry A0001801.dll. It provides
some data about the file including the file size, file creation time (ctime) and time of last
file modification (mtime). It is important to note that the error rate for FAT32 entries
is high and those entries should be ignored if the drive is not FAT.

For investigations on Windows disk images, such as the nps-2009-domexusers, the file
winpe.txt shows Windows executables related to the Windows Preinstallation Envi-
ronment. These file entries contain very long lines. The following is one line from the
file:

42753536 87 d84154e7789013878c6340a4d2d445 <PE ><FileHeader Machine=
"IMAGE_FILE_MACHINE_I386"NumberOfSections ="3" TimeDateStamp ="1208131815"
PointerToSymbolTable ="0" NumberOfSymbols ="0" SizeOfOptionalHeader ="224" >

49

<Characteristics ><IMAGE_FILE_EXECUTABLE_IMAGE />
<IMAGE_FILE_LINE_NUMS_STRIPPED /><IMAGE_FILE_LOCAL_SYMS_STRIPPED />
<IMAGE_FILE_32BIT_MACHINE/><IMAGE_FILE_DLL /></Characteristics >
</FileHeader ><OptionalHeaderStandard Magic ="PE32" MajorLinkerVersion ="7"
MinorLinkerVersion ="10" SizeOfCode ="512" SizeOfInitializedData ="1536"
SizeOfUninitializedData ="0" AddressOfEntryPoint ="0 x1046" BaseOfCode=
"0x1000" /><OptionalHeaderWindows ImageBase ="0 x6c6c0000" SectionAlignment
="1000" FileAlignment ="200" MajorOperatingSystemVersion ="5"
MinorOperatingSystemVersion ="1" MajorImageVersion ="5"
MinorImageVersion ="1" MajorSubsystemVersion ="4" MinorSubsystemVersion ="0"
Win32VersionValue ="0" SizeOfImage ="4000" SizeOfHeaders ="400" CheckSum ="
0x7485" SubSystem ="" SizeOfStackReserve ="40000" SizeOfStackCommit ="1000"
SizeOfHeapReserve ="100000" SizeOfHeapCommit ="1000" LoaderFlags ="0"
NumberOfRvaAndSizes ="10">< DllCharacteristics >
<IMAGE_DLL_CHARACTERISTICS_NO_SEH /></DllCharacteristics >
</OptionalHeaderWindows ><Sections ><SectionHeader Name =". text" VirtualSize
="be" VirtualAddress ="1000" SizeOfRawData ="200" PointerToRawData ="400"
PointerToRelocations ="0" PointerToLinenumbers ="0" ><Characteristics >
<IMAGE_SCN_CNT_CODE /><IMAGE_SCN_MEM_EXECUTE />
<IMAGE_SCN_MEM_READ /></Characteristics ></SectionHeader ><SectionHeader
Name =". rsrc" VirtualSize ="400" VirtualAddress ="2000" SizeOfRawData ="400"
PointerToRawData ="600" PointerToRelocations ="0" PointerToLinenumbers ="0"
><Characteristics ><IMAGE_SCN_CNT_INITIALIZED_DATA />
<IMAGE_SCN_MEM_READ /></Characteristics ></SectionHeader >
<SectionHeader Name =". reloc" VirtualSize ="8" VirtualAddress ="3000"
SizeOfRawData ="200" PointerToRawData ="a00" PointerToRelocations ="0"
PointerToLinenumbers ="0" ><Characteristics ><IMAGE_SCN_CNT_INITIALIZED_DATA />
<IMAGE_SCN_MEM_DISCARDABLE /><IMAGE_SCN_MEM_READ /></Characteristics >
</SectionHeader ></Sections ></PE>

The first number is the offset and tells you were to find the file. Most executables are
not fragmented. The second is the MD5 has of the first 4k of the file that can be used
to deduplicate and look up the file in the hash database. Finally, the bulk of the infor-
mation is contained in the <PE> XML block that breaks out all of the Windows PE
header information. It contains information about the File header, the characteristics
of the file, Windows header information and section header information.

The file winprefetch.txt contains the information from carved files Windows Prefetch
that were discovered anywhere on the drive. bulk_extractor will carve the Prefetch
files from unallocated space. This extremely useful because Prefetch files are frequently
deleted. A single line in the prefetch output file is also very long. The following is only
the beginning of one line from the file:

55758336 MSIEXEC.EXE <prefetch ><os >Windows
XP </os ><filename >MSIEXEC.EXE </filename ><header_size >152</ header_size >
<atime >2008 -10 -30 T03 :17:27Z</atime ><runs >14</runs ><filenames >
<file >\ x5CDEVICE\x5CHARDDISKVOLUME1\x5CWINDOWS\x5CSYSTEM32\x5CNTDLL.DLL
</file ><file >\ x5CDEVICE\x5CHARDDISKVOLUME1\x5CWINDOWS\x5CSYSTEM32\x5CKERNEL32.DLL
...

Printing the line out here would cover almost two pages. It includes a lot of information
about the Prefetch file including the name of the executable, the name of the DLLs,
the directory of DLLs, the atime, the number of runs, the serial number, and the ctime.
The Prefetch file is searchable and useable by investigators searching for EXEs or DLLs
related to a malware investigation.

JSON is the JavaScript Object Notation (used in Facebook, etc). The file json.txt

50

provides the offset, JSON and MD5 hash of the JSON information found on the disk
image. bulk_extractor is great at finding JSON in compressed streams and HIBER files.
The following are a few lines from the JSON file:

62836579 {"ask ":[" Ask"]," delicious ":[" Del.icio.us"],"digg ":[" Digg"]," email ":[" Email"],
"favorites ":[" Favorites "]," facebook ":[" Facebook "],"fark ":[" Fark"],"furl ":[" Furl"],
"google ":[" Google "],"live ":[" Live"]," myspace ":[" MySpace "],"myweb ":[" Yahoo MyWeb"
,"yahoo -myweb"]," newsvine ":[" Newsvine "]," reddit ":[" Reddit "],"sk*rt":["Sk*rt","skrt"],
"slashdot ":[" Slashdot "]," stumbleupon ":[" StumbleUpon ","su"]," stylehive ":[" Stylehive "],
"tailrank ":[" Tailrank"," tailrank2 "]," technorati ":[" Technorati "]," thisnext ":
[" ThisNext "]," twitter ":[" Twitter "]," ballhype ":[" BallHype "]," yardbarker ":
[" Yardbarker "]," kaboodle ":[" Kaboodle "],"more ":[" More ..."]}
26 d3b8c5010f4d39250dab3a1c1b839e

62842797 ["6 jb4","3j1d","v1me","gu83","uefc","fq1j","r5l7","ftho","gdq9 ","717h",
"24b7","d0en","ads7","m9b4","n0lq ","42c3","p5mp","7hbi","f0g6","7v98","mv86",
"d0ns","9a8a","64gg","jogl","cehp","mu2r","6h7h","sntb ","94ds","n1fv","3a2i",
"3end","l42s","a9j","q3dj","s150","di3s","3nu5","sk74","e39d","mkvj " ,"482d","kfej",
"nlcv","eroi","m6ee","rvaa","9nis","ef6b","g00q","b4hp","kbpq","bm4l","f7iu",
"e5gb","1sbj","rk0a","ck86","1etp","26sr","fivt","3v95","foqq","vtmj","canb",
"bchv","ku35","q4p9","gdkt","gng8","mdb9","ejjg ","27k9","30mf","nene",
"smmm","q204 ","83ot","6kbr","df1o","1q0j","nh32","ebso","d6t5","f2dp",
"3sqp","i4cs","6k7b","a1pv","ki2l","1f7","d6lv","u7r5","9t0e","5h0l","j8kn",
"7akj","9tj","jmu3","1ir1"] 5a04af7518ad74c497c9e74b7025736e

64044544 -GZIP -610 ["Top","Left","Right","Bottom "] 5354 ef6838974b1979e49ee379883c56

Some of the JSON features found, such as the one located at ’62836579’, are comprised
of a lot of information in the notation. Other JSON features are very short, such as the
feature located at in the GZIP compressed stream at ’64044544-GZIP-610.’ All of the
lines contain the MD5 hash of the JSON that is used for deduplication.

The file elf.txt typically contains information about ELF executables, which is the
executable file format for Linux and Android systems. The sample corpus used in this
example is from a Windows machine and does not contain any ELF executables.

10.2 Cyber Investigations

Cyber investigations cover a wide variety of areas. However, most involve looking for
encryption keys, hash values or information about ethernet packets. bulk_extractor
finds all of those things on the disk and writes them to different output files. Of note,
bulk_extractor also finds information in Base64 encoding and decompresses fragments
of Windows Hibernation files. There are not specific files created for that processing;
the information found in data with these encodings will be processed by other scanners
and stored in the appropriate feature files. The fact that a feature came from encoded
data will be indicated in the forensic path. The information contained therein may very
well be relevant to cyber investigations.

AES encryption implementation system sometimes leaves keys in memory and bulk_extractor
finds those keys, usually in RAM, Swap or hibernation files. The keys can sometimes be
used to decrypt AES encrypted material. The file aes.txt contains the keys that are
found. There was only one AES key found on the nps-2009-domexusers disk image.
The following is the line that describes it from the keys file including the offset, key and
key size descriptor (AES256):

51

1608580652 28 90 90 5e f7 ce b4 a7 2b 7d d9 45 d8 b0 56 99 97 f4 42
33 35 f1 54 9a 79 36 e7 1c 94 02 28 78 AES256

The file hex.txt contains extracted hexidecimal strings of a special length. The block
sizes cotained within it are either 128 or 256 due to the fact that those are the sizes used
for encryption keys and hash values. The disk image used in this example does not have
any of those and the file is blank.

bulk_extractor produces network information including PCAP files, Ethernet addresses,
and TCP/IP connections. The files ether.txt and ether_histogram.txt provide a
list of ethernet addresses from packets and ASCII. These are the addresses found on the
disk and located in ether.txt:

2435863552 00:0C:29:26: BB:CD (ether_dhost)
2435863552 00:50:56: E0:FE:24 (ether_shost)
2435865088 00:0C:29:26: BB:CD (ether_dhost)
2435865088 00:50:56: E0:FE:24 (ether_shost)
22637986225 00:80: C7:8F:6C:96 apter.\ x0AExample: 00:80: C7:8F:6C:96\ x00\x00

The file ether_histogram.txt groups these ethernet addresses in a histogram:

n=2 00:0C:29:26: BB:CD
n=2 00:50:56: E0:FE:24
n=1 00:80: C7:8F:6C:96

Packets likely traveled from 00:0C:29:26:BB:CD to 00:50:56:E0:FE:24. The other usage
has Ethernet addresses in UTF-16 format.

The file ip.txt contains IP addresses from packet carving, not from dotted quads. The
following is an excerpt from that file:

2435865102 inet_ntop win32 struct ip L (src) cksum -ok
2435865102 inet_ntop win32 struct ip R (dst) cksum -ok
2805534669 123.12.0.192 sockaddr_in
8694397397 135.5.0.234 sockaddr_in
9047318477 123.12.0.192 sockaddr_in
9446959573 135.5.0.234 sockaddr_in
11295228937 1.70.0.1 sockaddr_in

The L or R in the ’struct ip’ information indicates Local or Remote. This line also
includes the IP checksum is ok. The value could also be listed as "cksum-bad" to
indicate it is bad. Bad checksums may indicate a false positive and not a legitimate IP
address. Finally, the "sockaddr_in" indicates the IP address is from a "sockaddr_in"
structure. The file ip_histogram.txt removes the random noise that is found in the
ip.txt. Here is an excerpt from the histogram file:

n=5 2.172.0.101
n=4 123.12.0.192
n=4 inet_ntop win32
n=3 135.5.0.234
n=2 209.85.147.109
n=2 65.55.15.242

The file packets.pcap is a pcap file made from carved packet. To view that file, use any
packet analysis tool you like (such as tcpdump). Only packets carved from a PCAP
file will have the correct packet time stamp; others will given a time in 1970.

52

Finally, the file tcp.txt contains details about TCP (and UDP) network flows. It
contains more detail than ip.txt but investigators should be careful of false positives,
as there are often many in this file. The following are the two lines found in that file:
2435863566 inet_ntop win32 :80 -> inet_ntop win32 :1034 (TCP) Size: 1472
2435865102 inet_ntop win32 :80 -> inet_ntop win32 :1034 (TCP) Size: 1252

The file tcp_histogram.txt often provides further insight into the tcp information found
on the disk image. In this case, it does not because there were only two features found.
It is important to note that the histogram file still contains a lot of false positives.

11 Troubleshooting

Every forensic tool crashes at times because the tools are routinely used with data frag-
ments, non-standard codings, etc. One major issue is that the evidence that makes the
tool crash typically cannot be shared with the developer. The bulk_extractor system
implements checkpointing to protect the user and the results. bulk_extractor check-
points the current page in the file report.xml. After a crash, the user can just hit the
up-arrow at the command line prompt and return. bulk_extractor will restart at the
next page.

All bulk_extractor users should join the bulk_extractor users Google group for more in-
formation and help with any issues encountered. To join, send an email to bulk_extractor-
users+subscribe@googlegroups.com.

For the most part, the only kind of debugging bulk_extractor users should be doing is
turning off scanners. If bulk_extractor crashes repeatedly on a data set, the scanners
can all be disabled and then turned back on, one by one, until it crashes again. Then,
the user can report the specific scanner that made bulk_extractor crash on their disk
image. In general, users who experience crashes should feel free to report issues and
problems to the developers via the Google users group.

Users running the 32-bit version of bulk_extractor may occasionally encounter memory
allocation errors. This problem is more likely to occur on machines with a greater
number of cores. Our testing has shown this to be an issue using one of our test data
sets on a 32-bit machine with 12 cores. If the user encounters memory allocation errors
with bulk_extractor they will likely see an error similar to the following:
bulk_extractor scan error: ’std::exception Scanner: gzip Exception:
std::bad_alloc sbuf.pos0: (|21894266880) bufsize=20971520’

Memory allocation errors such as the one shown above will contain the phrase “bad_alloc”
somewhere in the message. If the user encounters this error, they should try run-
ning bulk_extractor with fewer threads. For example, the following command will run
bulk_extractor with only 4 threads (the -j option changes this parameter):

� bulk_extractor -j 4 -o output mydisk.raw

Reducing the number of threads and re-running the program should eliminate the prob-
lem.

Users may encounter errors if they are processing a large disk image and trying to write
the output of bulk_extractor to an output file directory on a smaller drive. In that case
the user might see an error similiar to the following:

53

bulk_extractor version: 1.4.0
Input file: G:\nps-2011-2tb\nps-2011-2tb.E01
Output directory: C:\Users\Mark Richer\Documents\BE Testing\OFD nps-2011-2tb 64bit
Disk Size: 2000054960128
Threads: 12
DISK FULL
DISK FULL
DISK FULL
*** carve: Cannot write(pos=7,0 len=24724184): No space left on device
DISK FULL
DISK FULL
DISK FULL
DISK FULL
DISK FULL
*** carve: Cannot write(pos=7,0 len=24724198): No space left on device
*** carve: Cannot write(pos=7,0 len=49160): No space left on device

*** carve: Cannot create C:\Users\Mark Richer\Documents\BE Testing\OFD nps-2011-2tb
64bit/kml/000/426602508288-ZIP-0.kml: No space left on device

Could not make directory C:\Users\Mark Richer\Documents\BE Testing\OFD nps-2011-2tb
64bit/kml/001: No space left on device

Phase 3. Creating Histograms
Cannot open histogram output file: C:\Users\Mark Richer\Documents\BE Testing\OFD
nps-2011-2tb 64bit/ccn_track2_histogram.txt

Elapsed time: 45111.4 sec.
Overall performance: 44.3359 MBytes/sec
Total email features found: 6716934

If this situation is encountered, the solution is to run bulk_extractor with an output
directory on a machine with more available disk space so that bulk_extractor has room
to create all the output files and directories required.

12 Related Reading

There are numerous articles and presentations available related to digital forensics,
specifically bulk_extractor , and its practical and research applications. Some of those
articles are specifically cited throughout this manual. Other useful references include
but are not limited to:

• Garfinkel, S. File Cabinet Forensics, Journal of Digital Forensics, Security and Law,
Vol 6(4). http://www.jdfsl.org/subscriptions/abstracts/JDFSL-V6N4-column-
Garfinkel.pdf

• Garfinkel, S. Every Last Byte. J. of Digital Forensics, Security and Law, 6:7âĂŞ8.
Column. http://www.jdfsl.org/subscriptions/abstracts/column-v6n2-Garfinkel.
htm

• Phillips, Kenneth N; Aaron Pickett; Simson Garfinkel, Embedded with Facebook:
DoD Faces Risks from Social Media, CrossTalk, May/June 2011. http://www.
dtic.mil/cgi-bin/GetTRDoc?AD=ADA542587

• Rowe, Neil, Schwamm, Riqui, Garfinkel, Simson. Language Translation for File
Paths, DFRWS 2013, Aug 4-7, 2013. Monterey, CA. http://www.dfrws.org/

54

http://www.jdfsl.org/subscriptions/abstracts/JDFSL-V6N4-column-Garfinkel.pdf
http://www.jdfsl.org/subscriptions/abstracts/JDFSL-V6N4-column-Garfinkel.pdf
http://www.jdfsl.org/subscriptions/abstracts/column-v6n2-Garfinkel.htm
http://www.jdfsl.org/subscriptions/abstracts/column-v6n2-Garfinkel.htm
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA542587
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA542587
http://www.dfrws.org/2013/proce
http://www.dfrws.org/2013/proce

2013/proce
edings/DFRWS2013-5.pdf

• Garfinkel, S., Nelson, A., Young, J., “A General Strategy for Differential Forensic
Analysis”, DFRWS 2012, Aug. 6-8, 2012, Washington, DC. http://www.dfrws.
org/2012/proceedings/DFRWS2012-6.pdf

• Garfinkel, S., “Lessons Learned Writing Computer Forensics Tools and Managing
a Large Digital Evidence Corpus”, DFRWS 2012, Aug. 6-8, 2012, Washington,
DC. http://simson.net/clips/academic/2012.DFRWS.DIIN382.pdf

• N. C. Rowe and S. L. Garfinkel, Finding anomalous and suspicious files from di-
rectory metadata on a large corpus. 3rd International ICST Conference on Digital
Forensics and Cyber Crime, Dublin, Ireland, October 2011. In P. Gladyshev and
M. K. Rogers (eds.), Lecture Notes in Computer Science LNICST 88, Springer-
Verlag, 2012, pp. 115-130. http://simson.net/clips/academic/2012.IICDFCC.
Anomalous.pdf

• Presentation - Using bulk_extractor for digital forensics triage and cross-drive anal-
ysis, DFRWS 2012. http://digitalcorpora.org/downloads/bulk_extractor/
doc/2012-08-08-bulk_extractor-tutorial.pdf

• Presentation - Digital Signatures: Current Barriers, Invited Talk, 10th Sympo-
sium on Identity and Trust on the Internet, Gaithersburg, MD, 2011. http://
middleware.internet2.edu/idtrust/2011/slides/07-digital-signatures-current
-barriers-garfinkel.pdf

• Courrejou, Timothy and Simson Garfinkel. A comparative analysis of file carving
software. Technical Report NPS-CS-11-006, Naval Postgraduate School, Septem-
ber 2011. http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.
pdf&AD=
ADA550119

55

http://www.dfrws.org/2013/proce
http://www.dfrws.org/2013/proce
edings/DFRWS2013-5.pdf
http://www.dfrws.org/2012/proceedings/DFRWS2012-6.pdf
http://www.dfrws.org/2012/proceedings/DFRWS2012-6.pdf
http://simson.net/clips/academic/2012.DFRWS.DIIN382.pdf
http://simson.net/clips/academic/2012.IICDFCC.Anomalous.pdf
http://simson.net/clips/academic/2012.IICDFCC.Anomalous.pdf
http://digitalcorpora.org/downloads/bulk_extractor/doc/2012-08-08-bulk_extractor-tutorial.pdf
http://digitalcorpora.org/downloads/bulk_extractor/doc/2012-08-08-bulk_extractor-tutorial.pdf
http://middleware.internet2.edu/idtrust/2011/slides/07-digital-signatures-current
http://middleware.internet2.edu/idtrust/2011/slides/07-digital-signatures-current
-barriers-garfinkel.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=
 ADA550119

Appendices

A Output of bulk_extractor Help Command

C:\>bulk_extractor -h

bulk_extractor version 1.5.0
Usage: bulk_extractor [options] imagefile

runs bulk extractor and outputs to stdout a summary of what was found where

Required parameters:
imagefile - the file to extract

or -R filedir - recurse through a directory of files
HAS SUPPORT FOR E01 FILES

-o outdir - specifies output directory. Must not exist.
bulk_extractor creates this directory.

Options:
-i - INFO mode. Do a quick random sample and print a report.
-b banner.txt- Add banner.txt contents to the top of every output file.
-r alert_list.txt - a file containing the alert list of features to alert

(can be a feature file or a list of globs)
(can be repeated.)

-w stop_list.txt - a file containing the stop list of features (white list
(can be a feature file or a list of globs)s
(can be repeated.)

-F <rfile> - Read a list of regular expressions from <rfile> to find
-f <regex> - find occurrences of <regex>; may be repeated.

results go into find.txt
-q nn - Quiet Rate; only print every nn status reports. Default 0; -1 for no status at all
-s frac[:passes] - Set random sampling parameters

Tuning parameters:
-C NN - specifies the size of the context window (default 16)
-S fr:<name>:window=NN specifies context window for recorder to NN
-S fr:<name>:window_before=NN specifies context window before to NN for recorder
-S fr:<name>:window_after=NN specifies context window after to NN for recorder
-G NN - specify the page size (default 16777216)
-g NN - specify margin (default 4194304)
-j NN - Number of analysis threads to run (default 4)
-M nn - sets max recursion depth (default 7)
-m <max> - maximum number of minutes to wait after all data read

default is 60

Path Processing Mode:
-p <path>/f - print the value of <path> with a given format.

formats: r = raw; h = hex.
Specify -p - for interactive mode.
Specify -p -http for HTTP mode.

Parallelizing:
-Y <o1> - Start processing at o1 (o1 may be 1, 1K, 1M or 1G)
-Y <o1>-<o2> - Process o1-o2
-A <off> - Add <off> to all reported feature offsets

Debugging:
-h - print this message
-H - print detailed info on the scanners
-V - print version number
-z nn - start on page nn
-dN - debug mode (see source code)

56

-Z - zap (erase) output directory

Control of Scanners:
-P <dir> - Specifies a plugin directory

Default dirs include /usr/local/lib/bulk_extractor /usr/lib/bulk_extractor and
BE_PATH environment variable

-e <scanner> enables <scanner> -- -e all enables all
-x <scanner> disable <scanner> -- -x all disables all
-E <scanner> - turn off all scanners except <scanner>

(Same as -x all -e <scanner>)
note: -e, -x and -E commands are executed in order

e.g.: ’-E gzip -e facebook’ runs only gzip and facebook
-S name=value - sets a bulk extractor option name to be value

Settable Options (and their defaults):
-S work_start_work_end=YES Record work start and end of each scanner in report.xml file ()
-S enable_histograms=YES Disable generation of histograms ()
-S debug_histogram_malloc_fail_frequency=0 Set >0 to make histogram maker fail with memory allocations ()
-S hash_alg=md5 Specifies hash algorithm to be used for all hash calculations ()
-S dup_data_alerts=NO Notify when duplicate data is not processed ()
-S write_feature_files=YES Write features to flat files ()
-S write_feature_sqlite3=NO Write feature files to report.sqlite3 ()
-S report_read_errors=YES Report read errors ()
-S ssn_mode=0 0=Normal; 1=No ‘SSN’ required; 2=No dashes required (accts)
-S min_phone_digits=6 Min. digits required in a phone (accts)
-S carve_net_memory=NO Carve network memory structures (net)
-S word_min=6 Minimum word size (wordlist)
-S word_max=14 Maximum word size (wordlist)
-S max_word_outfile_size=100000000 Maximum size of the words output file (wordlist)
-S wordlist_use_flatfiles=NO Override SQL settings and use flatfiles for wordlist (wordlist)
-S hashdb_mode=none Operational mode [none|import|scan]

none - The scanner is active but performs no action.
import - Import block hashes.
scan - Scan for matching block hashes. (hashdb)

-S hashdb_block_size=4096 Hash block size, in bytes, used to generte hashes (hashdb)
-S hashdb_ignore_empty_blocks=YES Selects to ignore empty blocks. (hashdb)
-S hashdb_scan_path_or_socket=your_hashdb_directory File path to a hash database or

socket to a hashdb server to scan against. Valid only in scan mode. (hashdb)
-S hashdb_scan_sector_size=512 Selects the scan sector size. Scans along

sector boundaries. Valid only in scan mode. (hashdb)
-S hashdb_import_sector_size=4096 Selects the import sector size. Imports along

sector boundaries. Valid only in import mode. (hashdb)
-S hashdb_import_repository_name=default_repository Sets the repository name to

attribute the import to. Valid only in import mode. (hashdb)
-S hashdb_import_max_duplicates=0 The maximum number of duplicates to import

for a given hash value, or 0 for no limit. Valid only in import mode. (hashdb)
-S exif_debug=0 debug exif decoder (exif)
-S jpeg_carve_mode=1 0=carve none; 1=carve encoded; 2=carve all (exif)
-S min_jpeg_size=1000 Smallest JPEG stream that will be carved (exif)
-S zip_min_uncompr_size=6 Minimum size of a ZIP uncompressed object (zip)
-S zip_max_uncompr_size=268435456 Maximum size of a ZIP uncompressed object (zip)
-S zip_name_len_max=1024 Maximum name of a ZIP component filename (zip)
-S unzip_carve_mode=1 0=carve none; 1=carve encoded; 2=carve all (zip)
-S rar_find_components=YES Search for RAR components (rar)
-S raw_find_volumes=YES Search for RAR volumes (rar)
-S unrar_carve_mode=1 0=carve none; 1=carve encoded; 2=carve all (rar)
-S gzip_max_uncompr_size=268435456 maximum size for decompressing GZIP objects (gzip)
-S pdf_dump=NO Dump the contents of PDF buffers (pdf)
-S opt_weird_file_size=157286400 Weird file size (windirs)
-S opt_weird_file_size2=536870912 Weird file size2 (windirs)

57

-S opt_max_cluster=67108864 Ignore clusters larger than this (windirs)
-S opt_max_cluster2=268435456 Ignore clusters larger than this (windirs)
-S opt_max_bits_in_attrib=3 Ignore FAT32 entries with more attributes set than this (windirs)
-S opt_max_weird_count=2 Ignore FAT32 entries with more things weird than this (windirs)
-S opt_last_year=2019 Ignore FAT32 entries with a later year than this (windirs)
-S xor_mask=255 XOR mask string, in decimal (xor)
-S sqlite_carve_mode=2 0=carve none; 1=carve encoded; 2=carve all (sqlite)

These scanners disabled by default; enable with -e:
-e base16 - enable scanner base16
-e facebook - enable scanner facebook
-e hashdb - enable scanner hashdb
-e outlook - enable scanner outlook
-e sceadan - enable scanner sceadan
-e wordlist - enable scanner wordlist
-e xor - enable scanner xor

These scanners enabled by default; disable with -x:
-x accts - disable scanner accts
-x aes - disable scanner aes
-x base64 - disable scanner base64
-x elf - disable scanner elf
-x email - disable scanner email
-x exif - disable scanner exif
-x find - disable scanner find
-x gps - disable scanner gps
-x gzip - disable scanner gzip
-x hiber - disable scanner hiber
-x httplogs - disable scanner httplogs
-x json - disable scanner json
-x kml - disable scanner kml
-x net - disable scanner net
-x pdf - disable scanner pdf
-x rar - disable scanner rar
-x sqlite - disable scanner sqlite
-x vcard - disable scanner vcard
-x windirs - disable scanner windirs
-x winlnk - disable scanner winlnk
-x winpe - disable scanner winpe
-x winprefetch - disable scanner winprefetch
-x zip - disable scanner zip

58

Table 1: Input Data Processed by the Scanners

Scanner
Name

Data Type Section Dis-
cussed in Man-
ual

base16 Base 16 (hex) encoded data (in-
cludes MD5 codes embedded in the
data)

Subsection 5.2

base64 Base 64 code Subsection 4.6
and Subsec-
tion 5.2

elf Executable and Linkable Format
(ELF)

Subsection 5.1

exif EXIF structures from JPEGS (and
carving of JPEG files)

Subsection 5.5

gzip GZIP files and ZLIB-compressed
GZIP streams

Subsection 4.6
and Subsec-
tion 5.2

aes In-memory AES keys from their key
schedules

Subsection 5.2

json JavaScript Object Notation files
and objects downloaded from web
servers, as well as JSON-like objects
found in source code

Subsection 5.1

jpeg JPEG carving. Default is only en-
coded JPEGs are carved. JPEGs
without EXIFs are also carved

Subsection 4.3
and Subsec-
tion 5.5

kml KML files (carved) Subsection 5.3
rar RAR components in unencrypted

archives are decrypted and pro-
cessed. Encrypted RAR file are
carved.

Subsection 4.3

pdf Text from PDF files (extracted for
processing not carved)

Subsection 4.6

windirs Windows FAT32 and NTFS direc-
tory entries

Subsection 5.2

hiber Windows Hibernation File Frag-
ments (decompressed and processed,
not carved)

Subsection 4.6

winprefetch Windows Prefetch files, file frag-
ments (processed)

Subsection 5.1

winpe Windows Preinstallation Environ-
ment (PE) Executables (.exe and
.dll files notated with MD5 hash of
first 4k)

Subsection 5.1

vcard vCard files (carved) Subsection 5.3
gps XML from Garmin GPS devices

(processed)
Subsection 5.3

zip ZIP files and zlib streams (pro-
cessed, and optionally carved)

Subsection 4.3
and Subsec-
tion 4.6

59

Table 2: There are three carving modes in bulk_extractor that are specified separately
for each file type, JPEG, ZIP and RAR.

Mode Mode Description
0 Do not carve files of the specified type.

1 Only carve encoded files of the specified
type

2 Carve everything of the specified type.

Table 3: The kinds of encodings that can be decoded by bulk_extractor and the amount
of context required for the decoding

Encoding Can be decoded when bulk_extractor finds
GZIP The beginning of a zlib-compressed stream
BASE64 The beginning of a BASE64-encoded stream
HIBER Any fragment of a hibernation file can generally be

decompressed, as each Windows 4k page is separately
compressed and the beginning of each compressed page
in the hibernation file is indicated by a well-known
sequence

PDF Any PDF stream compressed with ZLIB bracketed by
stream and endstream

ZIP The local file header of a ZIP-file component

60

	Introduction
	Overview of bulk_extractor
	A bulk_extractor Success Story

	Purpose of this Manual
	Conventions Used in this Manual

	How bulk_extractor Works
	Running bulk_extractor
	Installation Guide
	Installing on Linux or Mac
	Installing on Windows

	Run bulk_extractor from the Command Line
	Run bulk_extractor from Bulk Extractor Viewer
	Run bulk_extractor from Bulk Extractor Viewer

	Processing Data
	Types of Input Data
	Scanners
	Carving
	Suppressing False Positives
	Using an Alert List
	The Importance of Compressed Data Processing

	Use Cases for bulk_extractor
	Malware Investigations
	Cyber Investigations
	Identity Investigations
	Password Cracking
	Analyzing Imagery Information
	Using bulk_extractor in a Highly Specialized Environment

	Tuning bulk_extractor
	Post Processing Capabilities
	bulk_diff.py: Difference Between Runs
	identify_filenames.py: Identify File Origin of Features

	Worked Examples
	Encoding

	2009-M57 Patents Scenario
	Run bulk_extractor with the Data
	Digital Media Triage
	Analyzing Imagery
	Password Cracking
	Post Processing

	NPS DOMEX Users Image
	Malware Investigations
	Cyber Investigations

	Troubleshooting
	Related Reading
	Appendices
	Output of bulk_extractor Help Command

