bulk extractor 1.4

WORKED EXAMPLES

September 10, 2013

Authored by:
Jessica R. Bradley
Simson L. Garfinkel

Contents

1 Introduction 1
1.1 Encoding e 1
2 2009-M57 Patents Scenario 1
2.1 Run bulk_extractor withtheData 1
2.2 Digital Media Triage e 4
2.3 Analyzing Imagery 9
24 Password Cracking 10
2.5 PostProcessing 12
3 NPS DOMEX Users Image 13
3.1 Malware Investigations e 15
3.2 CyberInvestigations e 17

1 Introduction

The worked examples provided are intended to further illustrate how to use bulk_extractor to
answer specific questions and conduct investigatons. Each example uses a different, publicly
available dataset and can be replicated by readers of this manual.

1.1 Encoding

We describe the encoding system here in order to prepare users to view the feature files produced
by bulk_extractor. Unicode is the international standard used by all modern computer systems
to define a mapping between information stored inside a computer and the letters, digits, and
symbols that are displayed on the screens or printed on paper. UTF-8 is a variable width encoding
that can represent every character in the Unicode character set. It was designed for backward
compatibility with ASCII and to avoid the complications of endianness and byte order marks in
UTF-16 and UTF-32. Feature files in bulk_extractor are all coded in UTF-8 format. This means
that the odd looking symbols, such as accented characters (¢), funny symbols (-*-) and the
occasional Chinese character ([#) that may show up in the files are legitimate. Glyphs from

language, for example ,Cyrillic (IIT) or Arabic (8) may show up in features files as all foreign
languages can be coded in UTF-8 format. It is perfectly appropriate and typical to open up a
feature file and see characters that the user may not recognize.

2 2009-M57 Patents Scenario

The 2009-M57-Patents scenario tracks the first four weeks of corporate history of the (fictional)
MS57 Patents company. The company started operation on Friday, November 13th, 2009, and
ceased operation on Saturday, December 12, 2009. This specific scenario was built to be used as
a teaching tool both as a disk forensics exercise and as a network forensics exercise. The scenario
data is also useful for computer forensics research because the hard drive of each computer
and each computers memory were imaged every day. In this example, we are not particularly
interested in the exercises related to illegal activity, exfiltration and eavesdropping; they do
however provide interesting components for us to examine in the example data[2].

2.1 Run bulk_extractor with the Data

For this example, we downloaded and utilized one of the disk images from the 2009-M57-
Patents Scenario. Those images are available at http://digitalcorpora.org/corp/nps/
scenarios/2009-m57-patents/drives-redacted/. The file used throughout this ex-
ample is called charl1ie-2009-12-11.£01. Running bulk_extractor on the command line
produces the following output (text input by the user is bold):

C:\bulk_extractor>bulk_extractor -o ../Output/charlie-2009-12-11 charlie-2009-12-11.E01

http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/
http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/

bulk_extractor version: 1.4.0-betad
Input file: charlie-2009-12-11.E01

Output directory: ../Output/charlie-2009-12-11
Disk Size: 10239860736
Threads: 4

8:02:08 Offset 67MB (0.66%) Done in 1:21:23 at 09:23:31
8:02:34 Offset 150MB (1.47%) Done in 1:05:18 at 09:07:52
(
(

o\

o

8:03:03 Offset 234MB (2.29%) Done in 1:01:39 at 09:04:42
8:03:49 Offset 318MB (3.11%) Done in 1:09:19 at 09:13:08

oe

9:06:23 Offset 10049MB (98.14%) Done in 0:01:13 at 09:07:36
9:06:59 Offset 10133MB (98.96%) Done in 0:00:41 at 09:07:40
9:07:29 Offset 10217MB (99.78%) Done in 0:00:08 at 09:07:37

All data are read; waiting for threads to finish...
Time elapsed waiting for 4 threads to finish:
(timeout in 60 min .)
Time elapsed waiting for 3 threads to finish:
7 sec (timeout in 59 min 53 sec.)

Thread 0: Processing 10200547328

Thread 2: Processing 10217324544

Thread 3: Processing 10234101760

Time elapsed waiting for 2 threads to finish:
13 sec (timeout in 59 min 47 sec.)

Thread 0: Processing 10200547328

Thread 2: Processing 10217324544

All Threads Finished!

Producer time spent waiting: 3645.8 sec.

Average consumer time spent waiting: 3.67321 sec.
Nk hkhkkhkhkhkkhhkhkhkhhkhkhrhkhkrhkhkrkhkhkhrkhkhkhkhkhkhkhkhhkhhkkhhkkhkkk

** bulk_extractor is probably CPU bound. x*x*

* % Run on a computer with more cores *%*

* K to get better performance. * K

Ak hkh kA hkhhkhkhkhdh A hkhkhkhkhdhhkhhkkhhArhkkhkhkhkhkkhhkrhkhhhhk*x*x

Phase 2. Shutting down scanners

Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...

ip histogram... lightgrep histogram... tcp histogram...
telephone histogram... url histogram... url microsoft-live...
url services... url facebook-address... url facebook-id...
url searches...Elapsed time: 3991.77 sec.

Overall performance: 2.56524 MBytes/sec

Total email features found: 15277

All of the results from the bulk_extractor run are stored in the output directory charlie-2009-
12-11. The contents of that directory after the run include the feature files, histogram files and
carved output. Figure 1 is a screenshot of the Windows output directory. Additionally, the

following output shows a list of the files, directories and their sizes under Linux:
C:\bulk_extractor\charlie-2009-12-11>1s -s -F

1 aes_keys.txt 0 kml.txt
0 alerts.txt 0 lightgrep.txt
4 ccn.txt 0 lightgrep_histogram.txt
1 ccn_histogram.txt 196 packets.pcap
0 ccn_track2.txt 1 rar.txt
0 ccn_track2_histogram.txt 108 report.xml
23028 domain.txt 3728 rfc822.txt
192 domain_histogram.txt 20 tcp.txt

1038 1E 3131131 3 R R e IERE (R

[==]

==}

[==]

=l

[==]

==}

jpeg

aes_keys

alerts

cen
ccn_histogram
con_track?
ccn_trackZ_histogram
demain
demain_histogram
elf

email
email_histograrm
ether
ether_histogram
exif

find
find_histogram
aps

ip
ip_histogram
jpeg

json

==
[==
| =]
| S—
[==]
—_l
==
=
==

[==
| =]
==
[==]
[==
==
=
==
[==
| =]
==

[==]
[==

==

kel

lightgrep
lightgrep_histogram
packets.pcap

rar

report

rfcd2?

tcp

tcp_histogram
telephone
telephone_histogram
url
url_facebook-address
url_facebook-id
url_histogram
url_microsoft-live
url_searches

url_services

windirs
winpe
winprefetch
zip

70,106 KB
1KE

0 KB
6,682 KB
0 KB

Figure 1: Screenshot from Windows Explorer of the Output Directory Created by the
bulk_extractor run

0 elf.txt 4 tcp_histogram.txt

1696 email.txt 60 telephone.txt
36 email_histogram.txt 8 telephone_histogram.txt
24 ether.txt 70108 url.txt
1 ether_histogram.txt 1 url_facebook—-address.txt
508 exif.txt 0 url_facebook-id.txt
0 find.txt 6684 url_histogram.txt
0 find_histogram.txt 0 url _microsoft-live.txt
0 gps.txt 12 url_searches.txt
0 hex.txt 156 url_services.txt
32 ip.txt 0 vcard.txt
4 ip_histogram.txt 16432 windirs.txt
12 jpeg/ 20800 winpe.txt
504 Jpeg.txt 1864 winprefetch.txt
1896 json.txt 29624 zip.txt

Many of the feature files and histograms are populated with data. Additionally, there were some
JPEG files carved and placed in the jpeg directory. In the following sections, we demonstrate how
to look at these results to discover more information about the disk user and the files contained
on the disk image.

2.2 Digital Media Triage

Digital media triage is the process of using the results of a rapid and automated analysis of the
media, performed when the media is first encountered to determine if the media is likely to have
information of intelligence value and, therefore, should be prioritized for immediate analysis.
bulk_extractor performs bulk data analysis to help investigators quickly decide which piece of
digital media is the most relevant and useful to an investigation. Thus, bulk_extractor can be
used to aid in investigations (through the identification of new leads and social networks) rather
than just aiding in conviction-support (through the identification of illegal materials)[3].

In this example, we look at the charlie-2009-12-11.E01 image to quickly assess what kinds
of information useful to an investigation might be present on the disk. For the purposes of this
example, we will assume we are investigating corporate fraud and trying to discover the answers
to the following questions:

e Who are the users of the drive?

e Who is this person communicating with?

e What kinds of websites have they have been visiting most often?
e What search terms are used?

To answer many of these questions, we look at the identify information on the drive including
email addresses, credit card information, search terms, Facebook IDs, domain names and vCard
data. The output files created by bulk_extractor contain all of this type of information that was
found on the disk image.

The scenario setup leads us to believe that Charlie is the user of the this drive (based on the name
of the disk image). First, we look at email.txt to find information about the email addresses
contained on the disk. The first two lines of the email features found are the following (each
block of text represents one long line of offset, feature and context):

50395384 n\x000\x00m\x00b\x00r\x00e\x00_\x001\x002\x003\x00@\x00h\x000\x00t
\x00m\x00a\x001\x001\x00.\x00c\x000\x00m\x00 e\x00m\x00p\x001\x000\x00\x00\x0A\x00

\x09\x00n\x000\x00m\x00b\x00r\x00e\x00_\x001\x002\x003\x00@\x00h\x000\x00t\x00m
\x00a\x001i\x001\x00.\x00c\x000\x00m\x00\x0A\x00\x09\x00m\x001i\x00n\x000\x00m\x00b\x00

50395432 m\x001i\x00n\x000\x00m\x00b\x00r\x00e\x00@\x00m\x00s\x00n\x00.\x00c
\x000\x00m\x00 i\x001\x00.\x00c\x000\x00m\x00\x0A\x00\x09\x00m\x00i\x00n\x000\x00m
\x00b \x00r\x00e\x00@\x00m\x00s\x00n\x00.\x00c\x000\x00m\x00\x0A\x00\x09\x00e\x00]
\x00e\x00m\x00p\x001\x00

It is important to note that UTF-16 formatted text is escaped with \x00. This means that "\x00t
\x00e \x00x \x00t" translates to "text." The first two features found are "nombre_123 @hotmail.com"
and "minombre @msn.com." Both of the offset values, 50395384 and 50395432, are early on
the disk. At this point, there is no way to know if either of these email addresses are of any
significance unless they happen to belong to a suspect or person related to the investigation. The
first set of email features found appear on the disk printed in UTF-16 formatted text, like the
lines above.

Further down in the feature file, we find the following:

9263459 charlie@m57.biz 21) (88=Charlie <charlie@m57.biz>) (89\x0D\x0A =Pat
9263497 pat@m57.biz =Pat McGoo <pat@m57.biz>) (8B=WELCOME TO

Finding Charlie’s email address on the computer begins to further confirm the assumption that
this is his computer. The email_histogram. txt file provides important information. It shows
the most frequently occurring email addresses found on the disk. The following is an excerpt
from that top of that file:

n=875 mozillalkewis.ch (utf16=3)
n=651 charlie@m57.biz (utfl6=120)
n=605 ajbanck@planet.nl

n=411 mikep@oeone.com
n=395 belhaire@ief.u-psud.fr
n=379 premium-server@thawte.com (utfle=11)

n=356 lilmatt@mozilla.com
n=312 cedric.corazza@wanadoo. fr

This histogram output shows us that Charlie’s email address is the second most frequently occur-
ring name on the disk. It would likely be the first but, as described in the scenario description,
this company has only been in business for three weeks and its employees are new users of
the computers. Looking at this histogram file also gives us some insight into who the user of
this disk is communicating with. Those email addresses occurring most frequently that are
not part of the software installed on the machine (such as ajbanck @planet.nl) might indicate
addresses of people with whom the drive user is corresponding or they may result from other
software or web pages that were downloaded. (In this case, the email is from a Firefox extension.)

The file domain.txt provides a list of all the "domains" and host names that were found. The
sources include URLS, email and dotted quads. Much of the beginning of the feature file is
populated with microsoft.com domains. This is largely due to the fact that the disk image is from
a Windows machine. Further down in the file we find the following:

53878576 WWW.USpto.gov <a href="http://www.uspto.gov/patft/index.htm
53879083 WWww.uspto.gov <A HREF="http://www.uspto.gov/patft/help/help
53880076 ebizl.uspto.gov <A HREF="http://ebizl.uspto.gov/vision-service/
53880536 ebizl.uspto.gov <A HREF="http://ebizl.uspto.gov/vision-service/

The domains that were found make sense given that the disk image was obtained from a startup
company that deals with patents. Many of the domains found in the file are also in UTF-16

format (with "escaped" characters). It is also worth noting as users browse the domain output file
that domains are common in compressed data.

The domain_histogram.txt file provides a histogram of the domains found on the disk image.
It tends to give us better information for digital media triage than the domain.txt file as it
provides information about which domains most frequently appear on the disk image and not just
the order in which they were found. The beginning of the histogram file looks like the following:

n=10749 www.w3.0rg

n=6670 chroniclingamerica.loc.gov
n=6384 openoffice.org

n=5998 www.uspto.gov

n=5733 www.mozilla.org

n=5212 www.osti.gov

n=4952 www.microsoft.com

n=4470 patft.uspto.gov

Many of these domains are part of the operating system, such as openoffice.org, but some are
not, such as www.uspto.gov. The histogram file provides insight into the users activity on the
machine and which sites they were most frequently visiting.

The file rfc822 . txt primarily provides email headers and HTTP headers both of which are in
a format specified by RFC822, the Internet Message Standard. It can be useful to see the subject
of emails that have been sent and information form HTTP requests. The following is an excerpt
from the text file:

114074196 SUBJECT:softabs 11l |micro) \x5CW?cap\x00SUBJECT:softabs\x00SUBJECT:Caili
114074212 SUBJECT:Cailis SUBJECT:softabs\x00SUBJECT:Cailis\x00\x00SUBJECT:st0ck
114074228 SUBJECT:stOck SUBJECT:Cailis\x00\x00SUBJECT:st0ck\x00\x00\x00SUBJECT:Your
114074244 SUBJECT:Your Personal Quarantine Folder
SUBJECT:st0ck\x00\x00\x00SUBJECT: Your Personal Quarantine Folder\x00SUBJECT:rolex\x00
114074284 SUBJECT:rolex arantine Folder\x00SUBJECT:rolex\x00\x00\x00SUBJECT: (bro

Much of what is found in the file shown above are spam messages.

Telephone numbers found on the disk image are stored in telephone.txt. This following
numbers found in the file are clearly for technical support (found within installed software):

88850883 (800) 563-9048 rmation centre: () 563-9048\x0D\x0A
<i>Tech
88850995 (905) 568-4494 indowsé 95: () 568-4494\x0D\x0A
 Microsoft
88851056 (905) 568-2294 ice components: (905) 568-2294\x0D\x0A
 Other sta
88851111 (905) 568-3503 hnical support: () 568-3503\x0D\x0A
 Priority
88851162 (800) 668-7975 rt information: () 668-7975\x0D\x0A
 Text Tele

The next set of "telephone” numbers are clearly bogus numbers:

3649684174 008-017-0108 WA, 98366,1,4031-008-017-0108,City of Port Or
3649684741 000-031-0009 98337,0.13,3768-000-031-0009,Kitsap County C
3649818237 000-001-0005 8312,2.25,"3768-000-001-0005, 3768-000-003-0
3649818274 000-004-0002 0-003-003, 3768-000-004-0002, 3768-000-005-0

Finally, many of the numbers found are legitimate ones. These numbers were all found in GZIP
compressed data:

3772517888-GZzIP-28322 (831) 373-5555 onterey - <nobr>(831) 373-5555</nobr>
<a cl
3772517888-GZIP-29518 (831) 899-8300 Seaside - <nobr>(831) 899-8300</nobr>
<a cl
3772517888-GZIP-31176 (831) 899-8300 Seaside - <nobr>(831) 899-8300</nobr>
<a cl

Typically, the file telephone_histogram.txt is the best place to look for phone numbers. In
this file, the non-digits are extracted from the phone numbers. The following is an excerpt from
the beginning of that file:

n=42 +14159618830
n=35 8477180400
n=24 +27112570000
n=24 2225552222
n=18 8005043248
n=15 2225551111
n=13 8662347350
n=12 8772768437
n=11 2522277013

Investigators looking for specific information about the user of a disk image or who they have
been communicating with can look quickly at this file and see how frequently numbers appear. It
also consolidates the numbers in a way that makes it easy for investigators looking for a specific
number or set of numbers to see them quickly.

Finally, in performing digital media triage on the disk image, investigators would like to know
what specific URLs have been visited and what search terms the user has been using. The set
of URL files provided as output provide insight into this information. First, url.txt contains
the URLs found on the disk. The following is an excerpt from that file (note that the UTF-16
formatted information is escaped):

175165385 http://www.unicode.org/reports/tr25/#_TocDelimiters E and U+23DF:\x0A#
http://www.unicode.org/reports/tr25/#_TocDelimiters\x0A\x5Cu23DE = \x5CuE13B

159045397 h\x00t\x00t\x00p\x00:\x00/\x00/\x00w\x00w\x00w\x00.\x00d\x000\x00w
\x00n\x001\x000\x00a\x00d\x00.\x00w\x001i\x00n\x00d\x000\x00w\x00s\x00u\x00p
\x00d\x00a\x00t\x00e\x00.\x00c\x000\x00m\x00/\x00m\x00s\x00d\x000\x00w\x00n\x001\x000
\x00a\x00d\x00/\x00u\x00p\x00d\x00a\x00t\x00e\x00/\x00s\x000\x00£\x00t\x00w\x00a\x00r
\x00e\x00/\x00s\x00e\x00c\x00u\x00/\x002\x000\x000\x008\x00/\x000\x006\x00/\x00w\x001
\x00n\x00d\x000\x00w\x00s\x00x\x00p\x00-\x00k\x00b\x009\x005\x001\x003\x007\x006\x00—
\x00v\x002\x00-\x00x\x008\x006\x00-\x00e\x00n\x00u\x00_\x00e\x009\x00b\x006\x008\x00c
\x005\x00e\x006\x003\x00a\x00c\x00b\x005\x007\x008\x006\x00a\x000\x005\x00b\x005\x003
\x00b\x004\x00 \xB4\xF4\x82\x94C\xE3\xB6C\xBlp\x92e\xBC\x82,wh\x00t\x00t\x00p\x00:
\x00/\x00/\x00w\x00w\x00w\x00.\x00d\x000\x00w\x00n\x001\x000\x00a\x00d\x00.\x00w
\x001i\x00n\x00d\x000\x00w\x00s\x00u\x00p\x00d\x00a\x00t\x00e\x00.\x00c\x000
\x00m\x00/\x00m\x00s\x00d\x000\x00w\x00n\x001\x000\x00a\x00d\x00/\x00u\x00p\x00d
\x00a\x00t\x00e\x00/\x00s\x000\x00£\x00t\x00w\x00a\x00r\x00e\x00/\x00s\x00e\x00c\x00u
\x00/\x002\x000\x000\x008\x00/\x000\x006\x00/\x00w\x001\x00n\x00d\x000\x00w\x00s\x00x
\x00p\x00-\x00k\x00b\x009\x005\x001\x003\x007\x006\x00-\x00v\x002\x00-\x00x\x008\x006
\x00-\x00e\x00n\x00u\x00_\x00e\x009\x00b\x006\x008\x00c\x005\x00e\x006\x003\x00a\x00c
\x00b\x005\x007\x008\x006\x00a\x000\x005\x00b\x005\x003\x00b\x004\x003\x003\x002\x004
\x006\x005\x00d\x00e\x00

175197993 http://www.uspto.gov/patft/index.html enter>\x0A<a href="http://www.
uspto.gov/patft/index.html"><img src="/net

175198500 http://www.uspto.gov/patft/help/help.htm e>\x0A<AHREF="http://www.
uspto.gov/patft/help/help.htm"><IMG BORDER="0

The file url_histogram.txt provides the histogram of the potential urls. In that file, UTF-16
formatted text is converted to UTF-8. Note that not all URLSs contained in the histogram file are
accurate. The are actually URLs that were typed into a web browser. The following are lines
taken from that file:

n=3922 http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul (ut£16=2609)

n=859 http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xu (utf16=858)

n=2 http://math.nist.gov/~KRemington/papers/europvm.ps

n=2 http://math.nist.gov/~MDonahue/pubs/nan.ps.qgz

n=2 http://math.nist.gov/~RBoisvert/publications/ADL95.ps.gz
n=2 http://math.nist.gov/~RBoisvert/publications/IMACS97.ps.gz

Because the histogram file converts the UT-16 formatted text to UTF-8, the histogram file is more
human readable than the url. t xt file alone. The filesurl_facebook.txt,url_microsoft-live,
url_services and url_searches all extract specific types of information from URLs. The

most useful for digital media triage is likely the file url_searches.txt because it shows
histogram of searches from the disk image. Searches frequently convey intent. The following is

an excerpt from that file:

n=60 1

n=53 exotic+tcar+dealer
n=41 ford+car+dealer
n=34 2009+Shelby

n=25 steganography
n=23 General+Electric
n=23 time+travel

n=19 steganography+tool+free
n=19 vacation+packages
n=16 firefox

n=16 quicktime

n=14 Tzip

The file cen. txt provides credit card numbers that have been found on the disk. Based on the
scenario set-up for this disk image, credit card numbers are not necessarily highly relevant to
this investigation. However, bulk_extractor did find some credit card numbers on this disk image
that are not actually credit card numbers; This is common behavior so it is worth examining the
file here to demonstrate how it can be used in other investigations. The credit card number finder
considers a pattern of digits and uses the Luhn checksum algorithm and the distribution of digits
and the local context to identify potential credit card numbers. It is important to note that there
are frequently false positives. The first few lines of the ccn. txt file for this disk image look
like the following:

88284672-GZzIP-177427 5273347458642687 734B55CD5\x0A5273347458642687\x0AC0841BAFALIRAC28
4814857216-GZIP-793 4015751530102097 eb0.d=0;eb0.rnd=4015751530102097;eb0O.title="";eb
4909069775 6543210123456788 \x0Addadd7540 add ’6543210123456788" 0.499999999
4909069811 6543210123456788 499999999 -> ’6543210123456788’ Inexact Rounde
4909069861 6543210123456788 \x0Addadd7541 add ’6543210123456788" 0.5

4909069897 6543210123456788 5 -> 76543210123456788’ Inexact Rounde
4909069947 6543210123456788 \x0Addadd7542 add ’6543210123456788’ 0.500000001
5304221350 5678901234560000 +4 -> 5678901234560000\x0D\x0Addshi052 shift

5612375618 6543210123456788 \x0D\x0Aaddx6240 add ’6543210123456788’" 0.499999999
5612375654 6543210123456788 499999999 —> ’6543210123456788’ Inexact Rounde
5612375703 6543210123456788 \x0D\x0Aaddx6241 add ’6543210123456788’ 0.5

5612375739 6543210123456788 5 —-> '6543210123456788’ Inexact Rounde

5612375788 6543210123456788 \x0D\x0Aaddx6242 add ’6543210123456788’ 0.500000001
5612715901 5700122152274696 div4036 divide 5700122152274696 5700122152251

In the above example, ‘525273347458642687’ looks like it could be a valid credit card number
from the context (\x0OA is a new line). The number ‘4015751530102097’ looks like a random
number in a piece of Java Script. Note that both of those numbers were compressed; the offset
indicates they were found in GZIP streams (shown as a number followed by ‘-GZIP’). The
numbers whose context include “Inexact Rounde” are actually from Python source code and not

credit card numbers at all. Again, the ccn.txt tends to alert on a lot of false positives.

The ccn_track2.txt file did not find any information in this disk image but is also useful for
credit card fraud and identity theft investigations. It will contain credit card track 2 information
found on the disk image.

Using the files produced by bulk_extractor described above, an investigator can quickly review
a disk image for important information that is relevant to an investigation and find actionable
intelligence quickly.

2.3 Analyzing Imagery

The scenario described in the M57 Patents data is not necessarily relevant to an imagery in-
vestigation. However, there is imagery information on the disk. We use that information here
to demonstrate how imagery information can be analyzed by an investigator using bulk_extractor.

The file in the output directory, jpeg. txt, lists all JPEGs that were found on the disk whether
they were carved or not. bulk_extractor was run with default values meaning that only encoded
JPEGs were carved. The following excerpt from the JPEG file shows information about JPEGs
found on the disk image:

54798824 ../Output/charlie-2009-12-11/7jpeg/54783488.Jjpg <fileobject><filename>
../Output/charlie-2009-12-11/jpeqg/54783488. jpg</filename><filesize>15336</filesize>
<hashdigest type='md5’>13823ce7c21587d31f6eb4474612e660

</hashdigest></fileobject>

The JPEG described above was not carved because it was not encoded. However, the first
section “../Output/charlie-2009-12-11/jpeg/54783488.jpg” shows where the file would be found
in the output directories if it had been carved. The next section of information also gives
the file size, the hash type (in this case ‘md5’) and the hash value of the file (in this case
13823ce7c21587d31f6eb4474612e660). Note that this may not match the hash value of the file
in the original file system as bulk_extractor cannot properly carve fragmented files.

Information about encoded JPEGs can also be found in the jpeg. txt file. The following excerpt
shows a description of a JPEG found in a GZIP format on the disk:

3771686400-GZIP-8332 ../Output/charlie-2009-12-11/3jpeg/3771686400-GZIP-0. jpg
<fileobject><filename>../Output/charlie-2009-12-11/9peg/3771686400-GZIP-0. jpg
</filename><filesize>8332</filesize><hashdigest type='md5’>
5b77035¢c983b04996774370f735ea72a</hashdigest></fileobject>

The JPEG described above was carved and can be found in the /jpeg output directory in the file
named 3771686400-GzIP-0. jpg. The file also gives information about the filesize, hash type
and hash ID. That file is shown in the directory output shown below along with all of the encoded
JPEGs that were found on the disk image and were carved. The contents of the /jpeg directory
are as follows:

10037939712-GZIP-0.9pg 5324841013-2IP-0.3pg
10117679783-2ZIP-0.9pg 6039195136-GZIP-0.jpg
3761630720-GZIP-0.3pg 6039215616-GZIP-0. jpg
3764534784-GZIP-0.9pg 6039223808-GZIP-0. jpg
3771686400-GZIP-0.4pg 6039232000-GZIP-0.jpg
3771706880-GZIP-0.3pg 6039244288-GZIP-0. jpg
3771715072-GZIP-0.9pg 6039301632-GZIP-0. jpg
3771723264-GZIP-0.49pg 6039318016-GZIP-0.jpg

Figure 2: A JPEG carved from encoded data on the M57 Patents disk image

3771735552-GZIP-0.4pg 6883925636-2IP-0.3pg
3771792896-GZIP-0.pg 6884040324-2IP-0.3pg
3771809280-GZIP-0.3pg 6884056948-2IP-0.pg
3771833856-GZIP-0.3pg 7276064256-GZIP-0. ipg
3771858432-GZIP-0.9pg 7279128576-GZIP-0.ipg
429788672-GZIP-0. jpg 8877243047-2IP-0. ipg
5310405287-2IP-0. jpg 9948655104-GZIP-0. jpg

All of these JPEG files can be viewed and used by investigators. The filename is the forensic
path of where the JPEG was found. The file 3771686400-G21P-0. jpg mentioned above is
shown in Figure 2.

2.4 Password Cracking

The wordlist generates a list of all the words found on the disk that are between 6 and 14
characters long. The word list that is generated by the scanner can be very useful in determining
combinations of words to use for password cracking. The scanner is enabled by default because
it slows down the bulk_extractor run significantly. To show the word list in this example,
bulk_extractor was run again on the M57 Patents scenario data with the wordlist scanner enabled.

Running bulk_extractor on the command line with it enabled produces the following output:
C:\be\>bulk_extractor -e wordlist -o ../Output/charlie-wordlist charlie-2009-12-11.E01

bulk_extractor version: 1.4.0-betad
Input file: charlie-2009-12-11.E01

Output directory: ../Output/charlie-wordlist
Disk Size: 10239860736
Threads: 4

12:58:46 Offset 67MB (0.66%) Done in 1:14:55 at 14:13:41

14:03:24 Offset 10217MB (99.78%) Done in 0:00:08 at 14:03:32
All data are read; waiting for threads to finish...
Time elapsed waiting for 4 threads to finish:
(timeout in 60 min .)

Time elapsed waiting for 4 threads to finish:

8 sec (timeout 1n 59 min 52 sec.)
Thread 0: Processing 10200547328
Thread 1: Processing 10234101760
Thread 2: Processing 10183770112
Thread 3: Processing 10217324544

Time elapsed waiting for 1 thread to finish:
14 sec (timeout in 59 min 46 sec.)
Thread 3: Processing 10217324544

All Threads Finished!
Producer time spent waiting: 3627.92 sec.
Average consumer time spent waiting: 4.1518 sec.

Ak hkkhkhkhhkhkhkkhkrhkhkhkhkrhkhkhkhkrhkhkhkhkrhkhhkkhkrkhkkxkhkhkxkhkxkkx

10

**% bulk_extractor is probably CPU bound. *x*

* % Run on a computer with more cores *%*

* * to get better performance. * *
R R R I R I i I I I I I I I I I I I R b I 2 b b I I b i I S i i
Phase 2. Shutting down scanners

Phase 3. Uniquifying and recombining wordlist
Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...

ip histogram... lightgrep histogram... tcp histogram...
telephone histogram... url histogram... url microsoft-live...
url services... url facebook-address... url facebook-id

url searches...Elapsed time: 4065.09 sec.

Overall performance: 2.51898 MBytes/sec

Total email features found: 152775

Note that it took 3991.71 seconds to run bulk_extractor without the wordlist scanner enabled and,
in this case, it took 4065.09 seconds with wordlist enabled. The new output directory contains
a file called wordlist.txt. That file has both filenames and words in it. The following is an
excerpt from that file:

50497556 usemodem. jpg
50497624 usemsn. jpg
50497692 usemsnnow. jpg
50497760 welcome.htm
50497828 whereNow.htm
50497896 xmlutil.js
50497987 “Photoshop
50498009 Resolution
50498050 Global
50498057 Lighting
50498090 Global
50498097 Altitude
50498153 Copyright
50498181 Japanese
50498229 Halftone
50498238 Settings
50498335 Transfer

The wordlist contains ALL words found on the disk between 6 and 14 characters long. Automated
programs can be used to generate passwords from combinations of these words. The wordlist
scanner also generates a split wordlist containing the same words found in the wordlist.txt
file with all words deduplicated, sorted by size and alphabetized. The following is an excerpt
from the file wordlist_split_000.txt generated from the disk image:

concluded|1l
concluder/2
concluder/M
concluir/XQ
conclurai/x
conclusion,

conclusion.

conclusione
conclusions

conclusive,

The split wordlist is the file that is typically fed to password cracking software.

11

2.5 Post Processing

The programs identify_filenames.py and bulk_diff.py can provide further insight into the data
contained on the disk image. The identify_filenames.py program can be used on the feature
files produced from the bulk_extractor run to show the file location of the features that were
found. Running the program on all of the feature files produced by the bulk_extractor run
produces the following output (where charlie-2009-12-11 is the bulk_extractor output directory
and charlieAnnotatedOutput is where all the annotated files are written):

C:\be\>identify_ filenames.py -all charlie-2009-12-11 charlieAnnotatedOutput

Reading file map by running fiwalk on charlie-2009-12-11.E01
Processed 1000 fileobjects in DFXML file
Processed 2000 fileobjects in DFXML file

Processed 39000 fileobjects in DFXML file
Processed 40000 fileobjects in DFXML file

feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:
feature_file:

aes_keys.txt
ccn.txt
domain.txt
email.txt
ether.txt
exif.txt
ip.txt
jpeg.txt
json.txt
rar.txt
rfc822.txt
telephone.txt
url.txt
windirs.txt
winpe.txt
winprefetch.txt
zip.txt

ER R B I I I I I I I I I b b i I i b b i
x% Total Features: 754038 *x*
**% Total Located: 754038 xx%

R R I I I I I I i I S b I I b I b b i 4

Note, in this example that fiwalk is installed on the computer running the identify_filenames.py
program. The directory charlieAnnotatedOutput contains all of the annotated feature files,
showing the file location of the features. The directory contents are as follows:
annotated_rar.txt

annotated_rfc822.txt
annotated_telephone.txt

annotated_aes_keys.txt
annotated_ccn.txt
annotated_domain.txt
annotated_email.txt annotated_url.txt
annotated_ether.txt annotated_windirs.txt
annotated_exif.txt annotated_winpe.txt
annotated_ip.txt annotated_winprefetch.txt
annotated_jpeg.txt annotated_zip.txt

annotated_json.txt

The annotated files display the feature with the file in which the feature was found (where it was
identified by the program). The following is an excerpt from the annotated_email.txt file:

27767966 pat@m57.biz m: "Pat McGoo" <pat@m57.biz>\x0D\x0ATo:
and Settings/Charlie/Application Data/Thunderbird/Profiles/4zy34x9h.default/Mail/Local
Folders/Inbox dcb794e350bd198c4279614eaeb6c8b76

<charlie@ Documents

27767985 charlie@m57.biz @m57.biz>\x0D\x0ATo: <charlie@mS57.biz>, \x0D\x0A\x09<jolm

12

57.biz Documents and Settings/Charlie/Application Data/Thunderbird/Profiles/4zy34x9h.
default/Mail/Local Folders/Inbox dcb794e350bd198c4279614eaebc8b76

27768022 terry@m57.biz jo@m57.biz>, \x0D\x0A\x09<terry@m57.biz>\x0D\x0AX-ASG-0Orig—
Su Documents and Settings/Charlie/Application Data/Thunderbird/Profiles/4zy34x9h.def
ault/Mail/Local Folders/Inbox dcb794e350bd198c4279614eae6c8b76

The email address "pat@m57biz" was found in the file Documents and Settings/Charlie/
Application Data/Thunderbird/Profiles/4zy34x9h.default/Mail/Local Folders/Inbox
and investigators can refer to that location on the disk image to view the full text.

The program bulk_diff.py shows the difference between two bulk_extractor runs. In this case,
we used a disk image from the same user ("charlie") taken almost a month before the disk image
that has been used throughout this example. The disk image we have been using throughout
this example is dated December 11, 2009. The older disk image we downloaded for com-
parison is dated November 17, 2009. The earlier disk image data is stored in a file named
charlie-2009-11-17.E01 and can be downloaded from http://digitalcorpora.org/
corp/nps/scenarios/2009-m57-patents/drives—-redacted/.

After running bulk_extractor using the earlier disk image, we ran the program bulk_diff.py on
the output of that disk image and on the output of the char1ie-2009-12-11.E01 run. To run,
we typed the following, piping the output of the program to a file called bulkdiffoutput.txt:

B bulk_diff.py /charlie-2009-11-17 /charlie-2009-12-11 > bulkdiffoutput.txt

The output shows the features differences on the disk image. The following is an excerpt of that
output:

domain_histogram.txt:

#in PRE #in POST Value
401 4,470 4,069 patft.uspto.gov
181 3,151 2,970 WWw.wipo.int
295 3,157 2,862 WWW.google.com
0 2,537 2,537 l.yimg.com

The output specifically shows the differences in the histograms between the two runs across all
of the histogram files that were created. The excerpt above shows that "charlie" (the disk user)
visited the domain "patft.uspto.gov" frequently between the time the two images were recorder.
It was found 4,069 more times in the later disk image than in the one taken earlier. It also shows
that the domain "l.yimg.com" was not found on the earlier disk image but was found 2,537 times
on the later disk image. The results are sorted by the amount of the difference. This means that
features that are most different appear first. This can be very helpful because those features
generally give the most insight into the disk users activity over that period of time.

3 NPS DOMEX Users Image

NPS Test Disk Images are a set of disk images that have been created for testing computer
forensic tools. These images are free of non-public Personally Identifiable Information (PII) and
are approved for release to the general public. The NPS-created data in the images is public
domain and free of any copyright restriction; the images may contain some copyrighted data that
was made available by the copyright holder. These copyrights, where known, are noted in the
files themselves[1].

13

http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/
http://digitalcorpora.org/corp/nps/scenarios/2009-m57-patents/drives-redacted/

The NPS DOMEX users image is a disk image of a Windows XP SP3 system that has two users,
domexuser]l and domexuser2, who communicate with a third user (domexuser3) via IM and email.
The data is available for download at http://digitalcorpora.org/corp/nps/drives/
nps-2009-domexusers/. For this example, we use the file nps—2009-domexusers.E01
which includes the full system including the Microsoft Windows executables. Running bulk_extractor
on the command line produces the following output:

C:\be\>bulk_extractor -o ../Output/nps-2009-domexusers nps-2009-domexusers.E01l

bulk_extractor version: 1.4.0-betad
Input file: nps-2009-domexusers.EQ01

Output directory: ../Output/nps-2009-domexusers?
Disk Size: 42949672960
Threads: 4

16:50:53 Offset 67MB (0.16%) Done in 4:23:43 at 21:14:36
16:51:19 Offset 150MB (0.35%) Done in 3:58:37 at 20:49:56

16:13:12 Offset 42849MB (99.77%) Done in 0:00:11 at 16:13:23
16:13:13 Offset 42932MB (99.96%) Done in 0:00:01 at 16:13:14
All data are read; waiting for threads to finish...
Time elapsed waiting for 3 threads to finish:
(timeout in 60 min .)

Time elapsed waiting for 1 thread to finish:

6 sec (timeout in 59 min 54 sec.)
Thread 0: Processing 42932895744

Time elapsed waiting for 1 thread to finish:
12 sec (timeout in 59 min 48 sec.)
Thread 0: Processing 42932895744

All Threads Finished!

Producer time spent waiting: 4254.07 sec.
Average consumer time spent waiting: 89.309 sec.
khkhkhkkhkhkhkhkhkhkhkhkhkhkhrhkhkrkhkhkrkhkhkhrkhhkhkhhhkhkhhkhhhkkhkhkkhkhkk

** bulk_extractor is probably CPU bound. x*x*

* % Run on a computer with more cores «*x

* K to get better performance. * %

AR RS S S S SRS SRR R R R R E SRR R R R R SRS R RS SRS S SRR RS E S
Phase 2. Shutting down scanners

Phase 3. Creating Histograms

ccn histogram... ccn_track2 histogram... domain histogram...
email histogram... ether histogram... find histogram...

ip histogram... lightgrep histogram... tcp histogram...
telephone histogram... url histogram... url microsoft-live...
url services... url facebook—-address... url facebook-id...
url searches...Elapsed time: 4846.74 sec.

Overall performance: 8.86156 MBytes/sec
Total email features found: 8774

All of the results from the bulk_extractor run are stored in the output directory nps-2009-domex.
The contents of that directory after the run are as follows:

1 aes_keys.txt 1 kml.txt
0 alerts.txt 0 lightgrep.txt
1 ccn.txt 0 lightgrep_histogram.txt
1 ccn_histogram.txt 4 packets.pcap
0 ccn_track2.txt 1 rar.txt
0 ccn_track2_histogram.txt 424 report.xml
7364 domain.txt 536 rfc822.txt
44 domain_histogram.txt 1 tcp.txt
0 elf.txt 1 tcp_histogram.txt

14

http://digitalcorpora.org/corp/nps/drives/nps-2009-domexusers/
http://digitalcorpora.org/corp/nps/drives/nps-2009-domexusers/

1528 email.txt 48 telephone.txt

32 email_histogram.txt 4 telephone_histogram.txt
1 ether.txt 51888 url.txt
1 ether_histogram.txt 0 url_facebook-address.txt
152 exif.txt 0 url_facebook-id.txt
0 find.txt 1240 url_histogram.txt
0 find_histogram.txt 0 url_microsoft-live.txt
0 gps.txt 4 url_searches.txt
0 hex.txt 32 url_services.txt
4 ip.txt 0 vcard.txt
1 ip_histogram.txt 15228 windirs.txt
20 jpeg/ 26516 winpe.txt
380 jpeg.txt 1312 winprefetch.txt
316 json.txt 1956 zip.txt

For this example, we will focus on the files that are most important to malware investigations
and cyber investigations, showing how those files can be interpreted and used by investigators.

3.1 Malware Investigations

In a malware investigation, investigators are looking for information about programmatic intru-
sions. In this example, we examine all files that provide information about executables, Windows
directory entries and information downloaded from web-based applications. We recommend that
"-e xor" be enabled for malware investigations.

The file windirs.txt provides information about FAT32 and NTFS directories. It contains
most of the disk entries. The following is an excerpt showing one line from the file:

281954816 A0001801.d11 <fileobiject
src='mft’><atime>2008-10-21T00:45:51Z</atime><attr_flags>8224</attr_flags>
<crtime>2008-10-21T00:45:517</crtime><ctime>2008-10-21T00:45:517</ctime>
<filename>A0001801.d11</filename><filesize>1000000000000</filesize><filesize_alloc>
0</filesize_alloc><1sn>123437339</1sn><mtime>2008-10-21T00:45:51Z</mtime>
<nlink>1</nlink><par_ref>12017</par_ref><par_seqg>3</par_seg><seq>1</seq>
</fileobject>

The line from the file gives information about the disk entry A0001801.d11. It provides some
data about the file including the file size, file creation time (ctime) and time of last file modifica-
tion (mtime). It is important to note that the error rate for FAT32 entries is high and those entries
should be ignored if the drive is not FAT.

For investigations on Windows disk images, such as the nps-2009-domexusers, the file
winpe.txt shows Windows executables related to the Windows Preinstallation Environment.
These file entries contain very long lines. The following is one line from the file:

42753536 87d84154e7789013878c6340a4d2d445 <PE><FileHeader Machine=
"IMAGE_FILE_MACHINE_I386"NumberOfSections="3" TimeDateStamp="1208131815"
PointerToSymbolTable="0"NumberOfSymbols="0"SizeOfOptionalHeader="224">

<Characteristics><IMAGE_FILE_EXECUTABLE_IMAGE />
<IMAGE_FILE_LINE_NUMS_STRIPPED /><IMAGE_FILE_LOCAL_SYMS_STRIPPED />
<IMAGE_FILE_32BIT_MACHINE/><IMAGE_FILE_DLL /></Characteristics>
</FileHeader><OptionalHeaderStandard Magic="PE32" MajorLinkerVersion="7"
MinorLinkerVersion="10" SizeOfCode="512" SizeOfInitializedData="1536"
SizeOfUninitializedData="0" AddressOfEntryPoint="0x1046" BaseOfCode=
"0x1000" /><OptionalHeaderWindows ImageBase="0x6c6c0000" SectionAlignment
="1000" FileAlignment="200"MajorOperatingSystemVersion="5"
MinorOperatingSystemVersion="1" MajorImageVersion="5"
MinorImageVersion="1" MajorSubsystemVersion="4" MinorSubsystemVersion="0"

15

Win32VersionValue="0" SizeOfImage="4000" SizeOfHeaders="400" CheckSum="
0x7485" SubSystem="" SizeOfStackReserve="40000"SizeOfStackCommit="1000"
SizeOfHeapReserve="100000" SizeOfHeapCommit="1000" LoaderFlags="0"
NumberOfRvaAndSizes="10"><DllCharacteristics>
<IMAGE_DLL_CHARACTERISTICS_NO_SEH /></DllCharacteristics>
</OptionalHeaderWindows><Sections><SectionHeader Name=".text" VirtualSize
="be" VirtualAddress="1000" SizeOfRawData="200" PointerToRawData="400"
PointerToRelocations="0" PointerToLinenumbers="0" ><Characteristics>
<IMAGE_SCN_CNT_CODE /><IMAGE_SCN_MEM EXECUTE />

<IMAGE_SCN_MEM_READ /></Characteristics></SectionHeader><SectionHeader
Name=".rsrc" VirtualSize="400" VirtualAddress="2000" SizeOfRawData="400"
PointerToRawData="600" PointerToRelocations="0" PointerToLinenumbers="0"
><Characteristics><IMAGE_SCN_CNT_INITIALIZED_DATA />

<IMAGE_SCN_MEM_READ /></Characteristics></SectionHeader>

<SectionHeader Name=".reloc" VirtualSize="8" VirtualAddress="3000"
SizeOfRawData="200" PointerToRawData="a00" PointerToRelocations="0"
PointerToLinenumbers="0" ><Characteristics><IMAGE_SCN_CNT_INITIALIZED_DATA />
<IMAGE_SCN_MEM_DISCARDABLE /><IMAGE_SCN_MEM_READ /></Characteristics>
</SectionHeader></Sections></PE>

The first number is the offset and tells you were to find the file. Most executables are not
fragmented. The second is the MDS5 has of the first 4k of the file that can be used to deduplicate
and look up the file in the hash database. Finally, the bulk of the information is contained in
the <PE> XML block that breaks out all of the Windows PE header information. It contains
information about the File header, the characteristics of the file, Windows header information
and section header information.

The file winprefetch.txt contains the information from carved files Windows Prefetch
that were discovered anywhere on the drive. bulk_extractor will carve the Prefetch files from
unallocated space. This extremely useful because Prefetch files are frequently deleted. A single
line in the prefetch output file is also very long. The following is only the beginning of one line
from the file:

55758336 MSIEXEC.EXE <prefetch><os>Windows
XP</os><filename>MSIEXEC.EXE</filename><header_size>152</header_size>
<atime>2008-10-30T03:17:2772</atime><runs>14</runs><filenames>
<file>\x5CDEVICE\x5CHARDDISKVOLUME1\x5CWINDOWS\x5CSYSTEM32\x5CNTDLL.DLL
</file><file>\x5CDEVICE\x5CHARDDISKVOLUMEI \x5CWINDOWS\x5CSYSTEM32\x5CKERNEL32.DLL

Printing the line out here would cover almost two pages. It includes a lot of information about the
Prefetch file including the name of the executable, the name of the DLLs, the directory of DLLs,
the atime, the number of runs, the serial number, and the ctime. The Prefetch file is searchable
and useable by investigators searching for EXEs or DLLs related to a malware investigation.

JSON is the JavaScript Object Notation (used in Facebook, etc). The file json.txt provides the
offset, JSON and MD5 hash of the JSON information found on the disk image. bulk_extractor is
great at finding JSON in compressed streams and HIBER files. The following are a few lines
from the JSON file:

62836579 {"ask":["Ask"],"delicious":["Del.icio.us"],"digg":["Digg"],"email": ["Email"],
"favorites": ["Favorites"], "facebook": ["Facebook"],"fark": ["Fark"],"furl":["Furl"],
"google": ["Google"],"live": ["Live"], "myspace": ["MySpace"], "myweb": ["Yahoo MyWeb"

, "yvahoo-myweb"], "newsvine": ["Newsvine"], "reddit": ["Reddit"], "skxrt": ["Skxrt","skrt"],
"slashdot":["Slashdot"], "stumbleupon": ["StumbleUpon", "su"], "stylehive":["Stylehive"],
"tailrank":["Tailrank", "tailrank2"], "technorati":["Technorati"], "thisnext":
["ThisNext"], "twitter": ["Twitter"], "ballhype":["BallHype"], "yardbarker":

16

["Yardbarker"], "kaboodle": ["Kaboodle"], "more": ["More ..."]}
26d3b8c5010£4d39250dab3alclb839%e

62842797 ["67b4","331d", "vime", "gus3", "uefc", "£qli", "r517", "ftho", "gdq9", "717h",
"24b7", "d0en", "ads7", "m9b4", "n0lq", "42c3", "pSmp", "Thbi", "£0g6", "TvI8", "mv86",
"d0ns", "9a8a", "64gg™", "jogl", "cehp", "mu2r", "6h7h", "sntb", "94ds", "nlfv", "3a2i",
"3end", "142s","a93", "q3dj", "s150", "di3s", "3nu5", "sk74", "e39d", "mkvi", "482d", "kfej",
"nlev", "eroi”, "méee", "rvaa", "9nis", "ef6b", "g00q", "bahp", "kbpq", "bmdl", "£7iu",
"e5gb", "1Sbj", "rkOa", "Ck86", "1etp", "26Sr", "fivt", "3\/'95", "foqq", "Vtmj", "canb",
"bchv", “ku35", "q4p9", "qdkt", "gl’lg8", "mdb9", "ejjg“, "27k9", "30mf", "nene",

"smmm", "g204", "830t", "6kbr", "dflo", "1q03", "nh32", "ebso", "d6t5", "f2dp",

"3sqp", "idcs", "6k7b", "alpv", "ki2l", "1£7", "d6lv", "u7r5", "9t0e", "5Sh01l", "j8kn",
"7aki", "9t3", "jmu3", "1irl"] 5a04a£7518ad74c497c9e74b7025736e

64044544-GZIP-610 ["Top","Left","Right", "Bottom"] 5354ef6838974b1979e49ee379883c56

Some of the JSON features found, such as the one located at *62836579’, are comprised of a lot
of information in the notation. Other JSON features are very short, such as the feature located at
in the GZIP compressed stream at *64044544-GZIP-610.” All of the lines contain the MDS5 hash
of the JSON that is used for deduplication.

The file e1£ . txt typically contains information about ELF executables, which is the executable
file format for Linux and Android systems. The sample corpus used in this example is from a
Windows machine and does not contain any ELF executables.

3.2 Cyber Investigations

Cyber investigations cover a wide variety of areas. However, most involve looking for encryption
keys, hash values or information about ethernet packets. bulk_extractor finds all of those things
on the disk and writes them to different output files. Of note, bulk_extractor also finds informa-
tion in Base64 encoding and decompresses fragments of Windows Hibernation files. There are
not specific files created for that processing; the information found in data with these encodings
will be processed by other scanners and stored in the appropriate feature files. The fact that a
feature came from encoded data will be indicated in the forensic path. The information contained
therein may very well be relevant to cyber investigations.

AES encryption implementation system sometimes leaves keys in memory and bulk_extractor
finds those keys, usually in RAM, Swap or hibernation files. The keys can sometimes be used to
decrypt AES encrypted material. The file aes.txt contains the keys that are found. There was
only one AES key found on the nps—2009-domexusers disk image. The following is the line
that describes it from the keys file including the offset, key and key size descriptor (AES256):

1608580652 28 90 90 5e f7 ce b4 a7 2b 7d d9 45 d8 b0 56 99 97 f4 42
33 35 f1 54 9a 79 36 e7 1lc 94 02 28 78 AES256

The file hex.txt contains extracted hexidecimal strings of a special length. The block sizes
cotained within it are either 128 or 256 due to the fact that those are the sizes used for encryption
keys and hash values. The disk image used in this example does not have any of those and the
file is blank.

bulk_extractor produces network information including PCAP files, Ethernet addresses, and
TCP/IP connections. The files ether.txt and ether_histogram.txt provide a list of
ethernet addresses from packets and ASCII. These are the addresses found on the disk and
located in ether.txt:

17

2435863552 00:0C:29:26:BB:CD (ether_dhost)

2435863552 00:50:56:E0:FE:24 (ether_shost)
2435865088 00:0C:29:26:BB:CD (ether_dhost)
2435865088 00:50:56:E0:FE:24 (ether_shost)
22637986225 00:80:C7:8F:6C:96 apter.\x0AExample: 00:80:C7:8F:6C:96\x00\x00

The file ether_histogram.txt groups these ethernet addresses in a histogram:

n=2 00:0C:29:26:BB:CD
n=2 00:50:56:E0:FE:24
n=1 00:80:C7:8F:6C:96

Packets likely traveled from 00:0C:29:26:BB:CD to 00:50:56:E0:FE:24. The other usage has
Ethernet addresses in UTF-16 format.

The file ip. t xt contains IP addresses from packet carving, not from dotted quads. The following
is an excerpt from that file:

2435865102 inet_ntop win32 struct ip L (src) cksum-ok
2435865102 inet_ntop win32 struct ip R (dst) cksum-ok
2805534669 123.12.0.192 sockaddr_in
8694397397 135.5.0.234 sockaddr_in
9047318477 123.12.0.192 sockaddr_in
9446959573 135.5.0.234 sockaddr_in
11295228937 1.70.0.1 sockaddr_in

The L or R in the ’struct ip’ information indicates Local or Remote. This line also includes the IP
checksum is ok. The value could also be listed as "cksum-bad" to indicate it is bad. Bad check-
sums may indicate a false positive and not a legitimate IP address. Finally, the "sockaddr_in"
indicates the IP address is from a "sockaddr_in" structure. The file ip_histogram.txt re-
moves the random noise that is found in the ip.txt. Here is an excerpt from the histogram
file:

5 2.172.0.101
=4 123.12.0.192
=4 inet_ntop win32
=3 135.5.0.234
2 209.85.147.109
2

65.55.15.242

5 5 83 3 35

The file packets.pcap is a pcap file made from carved packet. To view that file, use any packet
analysis tool you like (such as tcpdump). Only packets carved from a PCAP file will have the
correct packet time stamp; others will given a time in 1970.

Finally, the file tcp.txt contains details about TCP (and UDP) network flows. It contains more
detail than ip.txt but investigators should be careful of false positives, as there are often many
in this file. The following are the two lines found in that file:

2435863566
2435865102

(TCP)
(TCP)

1472
1252

inet_ntop win32:80 -> inet_ntop win32:1034 Size:

inet_ntop win32:80 -> inet_ntop win32:1034 Size:

The file tcp_histogram.txt often provides further insight into the tcp information found
on the disk image. In this case, it does not because there were only two features found. It is
important to note that the histogram file still contains a lot of false positives.

18

References

[1] Disk images. Website:http://digitalcorpora.org/corpora/disk-images, June
2013. [Online; accessed August 2013].

[2] M57 patents scenario. Website:http://digitalcorpora.org/corpora/scenarios/
m57-patents-scenario, May 2013. [Online; accessed August 2013].

[3] GARFINKEL, S. Digital media triage with bulk data analysis and bulk_extractor. Computers
& Security 32 (October 2012), 56-72.

19

http://digitalcorpora.org/corpora/disk-images
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario

	Introduction
	Encoding

	2009-M57 Patents Scenario
	Run bulk_extractor with the Data
	Digital Media Triage
	Analyzing Imagery
	Password Cracking
	Post Processing

	NPS DOMEX Users Image
	Malware Investigations
	Cyber Investigations

