bulk_extractor 1.4

PROGRAMMERS MANUAL FOR DEVELOPING
SCANNER PLUG-INS

August 28, 2013

Authors:
Jessica R. Bradley
Simson L. Garfinkel

Contents

1 Introduction
1.1 Overview of bulk_extractor
1.2 Purpose of thisManual
1.3 Conventions UsedinthisManual

2 Setting up Code for Development

2.1 HowtoGettheCode
2.2 General Notes on Compiling
2.3 Compiling for MacOS or Linux
24 Compiling for Windows Lo
2.4.1 Cross-compile for Windows using Fedora

2.4.2 Cross-compile for Windows using Debian Testing (wheezy) or Ubuntu
12.04 LTS (withmingw)
2.4.3 Creating a Signed Windows Installer (Optional)

3 Overview of Architecture

4 Software System Design for Plug-ins
4.1 beld_apiModule
4.1.1 Sbufs e
4.1.2 Feature Recorders,
413 Plug-in APL
42 DEXML e e e e

5 Writing a Scanner Plug-in
5.1 Creating a Plug-in Shared Library
5.2 Packaging e
5.3 Guidelines for Development L.
53.1 PHASE STARTUP.
532 PHASE INIT o
5.3.3 PHASE_THREAD_BEFORE_SCAN
534 PHASE SCAN
5.3.5 PHASE_SHUTDOWN
5.4 Scanner Examples e
54.1 Scan ASCIIExample
542 XOR Scanner Example

6 Style Guide
6.1 General FormattingRules oL 0o
6.2 Multi-threaded Style Guidelines

Appendices
A ASCII Scanner Plug-in Example Code

B XOR Scanner Example Code

DN — =

W W W W NN

22
23
23

26

26

30

1 Introduction

1.1 Overview of bulk_extractor

bulk_extractor is a C++ program that extracts email addresses, credit card numbers, URLs, and
other types of information from digital evidence files. bulk_extractor operates on disk images,
files or a directory of files and extracts useful information without parsing the file system or file
system structures. The input is split into pages and processed by one or more scanners. The
results are stored in feature files that can be easily inspected, parsed, or processed with automated
tools. bulk_extractor also creates histograms of features that it finds. This is useful because
features that are more common tend to be important.

In addition to the capabilities described above, bulk_extractor also includes

e A BE Viewer User Interface (BEViewer) for browsing features stored in feature files and
for launching bulk_extractor scans

e A small number of python programs that perform automated processing on feature files

bulk_extractor 1.4 detects and optimistically decompresses data in ZIP, gzip, RAR, and Mi-
crosoft’s XPress Block Memory Compression algorithm. This has proven useful, for example,
for recovering email addresses from within fragments of corrupted system hibernation files.

bulk_extractor contains a simple but effective mechanism for protection against decompression
bombs. It also has capabilities specifically designed for Windows and malware analysis including
decoders for the Windows PE, Linux ELF, VCARD, BASE16 and a Windows directory formats.

bulk_extractor gets its speed through the use of compiled search expressions and multi-threading.
The search expressions are written as pre-compiled regular expressions, essentially allowing
bulk_extractor to perform searches on disparate terms in parallel. Threading is accomplished
through the use of an analysis thread pool. After the features have been extracted, bulk_extractor
buildTs a histogram of email addresses, Google search terms, and other extracted features. Stop
lists can also be used to remove features not relevant to a case.

bulk_extractor is distinguished from other forensic tools by its speed and thoroughness. Because
it ignores file system structure, bulk_extractor can process different parts of the disk in parallel.
In typical use, the program splits the disk image into 16MiByte pages and processes one
page on each available core. This means that 24-core machines processes a disk roughly 24
times faster than a 1-core machine. bulk_extractor is also thorough. It automatically detects,
decompresses, and recursively re-processes compressed data that has been compressed with a
variety of algorithms. Our testing has shown there is a significant amount of compressed data
in the unallocated regions of file systems missed by most forensics tools that are commonly
in use today. Another advantage of ignoring file systems is that bulk_extractor can be used to
process any digital media. The program has been used to process hard drives, SSDs, optical
media, camera cards, cell phones, network packet dumps, and other kinds of digital information.

1.2 Purpose of this Manual

This Programmers Manual provides guidelines for bulk_extractor plug-in development. Plug-ins
are external scanners that an individual or organization can run in addition to the open source
capabilities provided by the tool. The plug-in system gives the full power of bulk_extractor to

external developers, as all of bulk_extractor’s native scanners are written with the plug-in system.
This power gives third party developers the ability to utilize proprietary or protected algorithms
in bulk_extractor scanners.

This manual is intended for programmers of bulk_extractor scanner plug-ins. It describes an
overview of the bulk_extractor architecture demonstrating how the scanners operate, the process
for adding a scanner plug-in and guidelines for doing so, and it provides several examples of
bulk_extractor scanner plug-ins.

1.3 Conventions Used in this Manual

This manual uses standard formatting conventions to highlight variable names, file names, code
examples and example commands. The conventions for those specific types are described in this
section.

File names are displayed in a teletype font. They will appear as filename.txt within the text
throughout the manual.

Variable and function names are displayed in italics. They appear as variablename and function-
name() within the text throughout the manual.

This manual contains example commands that should be typed in by the user. A command
entered at the terminal is shown like this:

B command

The first character on the line is the terminal prompt, and should not be typed. The black square
is used as the standard prompt in this manual, although the prompt shown on a users screen will
vary according to the system they are using.

Finally, there are numerous code examples of one line or more throughout the text. Those
examples are displayed in a courier font and will be shown as the following:

void exampleFunction ()

2 Setting up Code for Development

2.1 How to Get the Code

There are several ways to obtain the bulk_extractor code base. The recommended way is
to download the code in .tar.gz format from the digitalcorpora website at the following url:
http://digitalcorpora.org/downloads/bulk_extractor/ This website always has
the latest released version. It will be named bulk_extractor-(versionnumber)_(codeversion).tar.gz
where version number will be the number of the code release and code version is the number
following the major release number. So, a release for 1.4.0 would be called bulk_extractor-
1.4.0.tar.gz.

Another way to obtain the development version of the code is to run the git command with the
following parameters:

B git clone —-recursive https://github.com/simsong/bulk_extractor.git

http://digitalcorpora.org/downloads/bulk_extractor/

This is intended for bulk_extractor developers only. The code in that location is not considered a
stable release. It is almost constantly in development and could be updated or changed at any
time.

2.2 General Notes on Compiling

This section includes instructions for compiling bulk_extractor for Linux, Mac and Windows (by
cross-compiling on Linux). MacOS and Linux systems provide the easiest and recommended
way to compile bulk_extractor but it can be done on Windows systems if necessary.

2.3 Compiling for MacOS or Linux

If the source is downloaded from github, the next step is to (from the downloaded source
directory) run bootstrap.sh, configure and make. If the source is extracted from the .tar.gz file, it
is not necessary to run bootstrap.sh. :

B cd bulk_extractor
sh bootstrap.sh (only for source obtained from github, not .tar.gz)

|
B sh configure
B make

|

sudo make install

2.4 Compiling for Windows

The only tested and recommended way to compile for Windows is to cross-compile from a
Linux system with MinGW. There are two methods for cross-compiling described below. The
primary environment for cross-compiling is Fedora. Fedora is recommended over Ubuntu for
several reasons but primarly because the installation is only tested on Fedora. Previous versions
compiled natively on Windows using MinGW or cygwin but those methods are currently untested
and are not supported at this time.

24.1 Cross-compile for Windows using Fedora

First, set up the mingw and cross-compilation environment:

B sudo yum -y install mingw64-gcc-c++
mingw64-zlib-static mingw64-pthreads flex
B sudo yum -y install autoconf automake (only for source from github)
B sudo yum -y install zlib-devel zlib-static
Run script CONFIGURE_F18.sh found in directory src_win/
B make win32
B make win62

Next, enable the Windows installer by running configure:
B ./configure --enable-win_installer

After enabling the Windows installer, type the following to create the unsigned windows installer.

B cd win src && make

2.4.2 Cross-compile for Windows using Debian Testing (wheezy) or Ubuntu 12.04 LTS
(with mingw)

First, you need to install mingw-w64. Go to the directory where you would like to install mingw
and run the following command:

B sudo apt-get update
B sudo apt-get upgrade
B sudo apt-get -y install mingw-wé4

Next, run the following command to allow cross-compiling of the 64-bit and the 32-bit bulk_extractor.exe
(although running the 32-bit version is not recommended).

B ./configure —-—host=i686-w64-mingw32

To compile the source, go to the bulk_extractor directory where you ran the git command or
extracted the .tar.gz file and run the following commands:

B cd bulk_extractor
B sh boostrap.sh (only for source obtained from github, not .tar.gz))
B mingw64_configure

Using this method, the executables, libraries and scripts required for bulk_extractor are not
installed automatically. All of that must be done manually by the user. Again, this is why this
method is not recommended or supported.

2.4.3 Creating a Signed Windows Installer (Optional)

A certification is not required for the use of bulk_extractor. However, if programmers wish to
create a signed installer, the following steps will create a signed Windows installer. Signing tool
"osslsigncode” for Authenticode signing of EXECAB files is required.

o Install the package osslsigncode.

e Define and export the Environment variables BE_CERT and
BE_CERT_PASSWORD, in order to sign files.

e The Environment variable BE_CERT must be set to the location of the code signing
certificate.

e The Environment Variable BE_CERT_PASSWORD must be set to the password for the
code signing certificate.

The file unistall.exe must also be present so that it can be signed. Obtaining it requires
several steps:

e Create the unsigned installer by typing make as described above

e Run the unsigned installer on a Windows system. This action will additionally install the
uninstaller.

e Copy the uninstaller from the Windows system back into this directory. It should be at
path C:\Program Files (x86)\Bulk Extractor <version>\uninstall.exe

If the system clock on your Windows system is slower, you may need to fouch uninstall.exe after
it is installed in this directory. Finally, run make signed to complete installation. [5]

4

Thread 0 | '/'// >
email scanner
N
acct scanner |-
“\
kml scanner |-)— !

GPS scanner

1/
net scanner
aes scanner

wordlist scanner
zip scanner

7
pdf scanner

— 1/
hiberfile scanner

Evidence Threads 1-N Feature Files GuI

»| email.txt Ls

oo

rfc822

Histogram
processor

ip histogram [

email histogram 5\7 \
<

image_process
iterator

Disk Image
EO1
AFF

split raw

Bulk Data

Figure 1: Overall System Architecture of bulk_extractor

3 Overview of Architecture

bulk_extractor is written in C and C++ and uses GNU autotools as a build environment. De-
velopment is typically done in Linux or MacOS as described in the previous section. The key
features of the architecture are:

e Scanners that look for information of interest in typical investigations
e Recursive re-analysis of compressed data

e Results stored in "feature files"

e Multi-threaded operation

This section gives a high level overview of how the architecture works. Later in this document,
Section 4 Software System Design for Plug-ins provides the specific implementation details
for the key features are discussed in more detail. At a high level, bulk_extractor processes disk
images, scans those images and produces feature files. The multi-threaded application runs these
steps in parallel on different parts ("pages") of the disk simultaneously. Results are combined by
the feature recorder system.

Figure 1 depicts the overall system processing. Thread O reads the bulk data into the image
processing iterator where the data is divided into sections for processing by the scanners. The
application then runs the scanners in multiple threads (threads 1 — N) to create feature files
and histograms of the data found in the images. Scanners each serve a specific purpose, look-
ing for different types of information (email, wordlist) or at different types of data (zip, pdf).
The scanners run iteratively, processing data that has been scanned or processed by other scanners.

Image processing handles multiple image formats (including EO1, AFF, raw, split raw &indi-
vidual disk files), raw devices or files. The image_process iterator that runs in the first thread

Disk Image »

é pagesize —> I_»
@ bufsize q

Figure 2: Image Processor divides the disk image into sbuf objects. Each sbuf object is the size of a page
(pagesize) with a buffer overlap in an area called the margin (marginsize is equal to bufsize-pagesize). The
sbufs overlap with each other to ensure all information is processed.

(Thread 0) chops the images into sbuf_t objects (referred to as sbufs). Sbufs ("safer buffer")
provide a typesafe means to refer to binary data with the context of bulk_extractor. All data that
bulk_extractor processes is divided into sbufs. Sbufs are a block of memory that hold the data,
the margin and the path of the first byte (pos0) of a piece of data. The sbuf is typically the size of
a page plus a buffer but it can also be smaller or much larger. Pages overlap to avoid dropping
features that cross buffer boundaries. The area of overlap is called the margin. Each sbuf can
be processed in parallel and are not dependent on each other. Features that start in the page
but end in the margin are reported. Features that start in the margin are ignored and processed
later in a future scanner iteration. The assumption behind the image processing algorithm is that
the feature size is smaller than the margin size. A typical margin is 1 MB but it can be made
larger with a command line argument. Figure 2 depicts how the bufsize overlaps the pagesize
(difference is the margin - marginsize). The disk image is broken into these sbufs for processing.

The image_process iterator makes sbuf_t buffers. Each buffer is processed by every enabled
scanner. In the bulk_extractor code, sbuf_t objects are described as follows:

class sbuf_t{

public: {

const uint8_t *buf /xdatax/

const posO_t posO /xforensic pathx/
const size_t bufsize

const size_t pagesize;

i

Scanners process sbufs and extract features. There are many different types of scanners within
bulk_extractor that each look for a different type of information. A given scanner can also be
written to discover one or more types of features. For example, the email scanner, as depicted in
Figure 3, iteratively processes sbuf objects, finds three different types of features and outputs
to three feature files including email.txt (includes email addresses), rfc822.txt (includes

Message-ID, Date, Subject, Cookie and Host Information) and domain.txt (IP addresses and
host names).

Features files are written using the feature recording system. Thread safe feature recorder objects
store the features and write the information to the appropriate feature file. Scanners are given a
(feature_recorder *) pointer and as features are discovered, they are sent to the feature recorder.
Multiple scanners may have the same feature pointer. As previously stated, the email scanner
finds email addresses and those findings are written to email.txt by the feature recorder. Other
scanners will find emails throughout scanning that are sent to the email feature recorder and

!

email scanner

email.txt
———

ip.txt

SBUFs

rfc822

Figure 3: The email scanner writes to three different types of feature files.

email scanner

Figure 4: Many scanners, email scanner among them, will write to the email.txt as email features are
discovered during the multi-threaded scanning process.

also written to email.txt. Figure 4 shows how many scanners write to one feature file during
bulk_extractor scanner operation.

A feature files contains rows of features. Each row is typically comprised of an offset, a feature,
and the feature in evidence context although scanners are free to store whatever information they
wish. A few lines of an email feature file might look like the following:

OFFSET FEATURE FEATURE IN EVIDENCE CONTEXT
48198832 domexuser2@gmail.com __<name>domexuser2@gmail .com/Home
48200361 domexuser2@live.com <name>domexuser2@live .com</name

48413823 siege@preoccupied.net 'Brien <siege@preoccupied.net>_1

The types of features displayed in the feature file will vary depending on what type of feature is
being stored. However, all feature files use the same format with each row corresponding to one
found instance of a feature and three columns describing the related data (offset, feature, and
feature in evidence context). Scanner plug-in programmers will have to specify the features that
the scanner creates and write to those features during scanning.

Histograms are a powerful tool used in bulk_extractor for understanding evidence. A histogram
of emails allows us to rapidly determine the drive’s primary user, the user’s organization, primary
correspondents and other email addresses. The feature recording system automatically makes
histograms as data is processed. When the scanner writes to the feature recording system, the
relevant histograms are automatically updated. Therefore, scanner plug-in programmers will
not specifically have to write any information to the histograms. Programmers will only have
to specify the type of histogram the scanner creates and subsequent data will be sent to the
histograms automatically.

A histogram file will, in general, look like the following file excerpt:

n=875 mozilla@kewis.ch (utfl6=3)
n=651 charlie@m57.biz (utfl6=120)
n=605 ajbanck@planet.nl

n=288 mattwillis@gmail .com

n=281 garths@oeone.com

n=226 michael.buettner@sun.com (utfl6=2)
n=225 bugzilla@babylonsounds .com

n=218 berend.cornelius@sun.com

n=210 ips@mail.ips.es

n=201 mschroeder@mozilla.x—home. org
n=186 pat@m57.biz (utfl6=1)

Each line shows a feature and the number of times that feature was found by bulk_extractor.
Features are stored in the file in order of occurrence with most frequent features appearing at the
top of the file and least frequent displayed at the bottom.

bulk_extractor has multiple scanners that extract features. Each scanner runs in an arbitrary order.
Scanners can be enabled or disabled which can be useful for debugging and speed optimization.
Some scanners are recursive and actually expand the data they are exploring thereby creating
more sbufs. Recursion is used for, among other things, decompressing ZLIB and Windows
HIBERFILE, extracting text from PDFs and handling compressed browser cache data. The
recursion process requires a new way to describe offsets.

\4

zip scanner email scanner

SBUFs

image_process

iterator

Figure 5: To extract a compressed email, sbufs are first decompressed by the zip scanner. Then,
decompressed sbuf data is sent to the other scanners (including email scanner).

bulk_extractor introduces the "forensic path." The forensic path is a description of the origination
of a piece of data, whether it be from, for example, a flat file, a data stream, or a decompression
of some type of data. Consider an HTTP stream that contains a GZIP-compressed email as
shown in Figure 5. scan_zip will find zlib-compressed regions and an sbuf is made for the
decompressed data. The data is then re-analyzed by the other scanners. Using this method,
bulk_extractor can find email addresses in compressed data.

Every forensic tool crashes at times because the tools are routinely used with data fragments,
non-standard codings, etc. One major issue is that the evidence that makes the tool crash typically
cannot be shared with the developer. The bulk_extractor system implements checkpointing
to protect the user and the results. bulk_extractor checkpoints the current page in the file
report.xml. After a crash, the user can just hit the up-arrow in the BEViewer and return.
bulk_extractor will restart at the next page.

The file report.xml is a Digital Forensics XML (DFXML) report that includes information
about the source media, how the bulk_extractor program was compiled and run, the time to
process the digital evidence, and a meta report of the information that was found. DFXML will
be discussed briefly in Subsection 4.2 DFXML later in this document.

bulk_extractor’s design is integrated but compact. The design allows programmers to implement
their own scanners that can be enabled or disabled for different bulk_extractor applications.
These scanner plug-ins use the same methodology and code structure as the scanners that are
built and distributed with the bulk_extractor system. The methodology to build scanner plug-ins
is described in Section 5 Writing a Scanner Plug-in. The next section provides more details on
the specific parts of the bulk_extractor API that are most relevant to scanner plug-in developers.

4 Software System Design for Plug-ins

The module bel3_api is the API for bulk_extractor. It provides the software description and
implementation for sbufs, feature recorders and the complete scanner plug-in system API. The
bel3_api module is located inside the /src directory. Histograms are also described and imple-

mented in the /src directory.

The dfxml module, also located in the /src directory, provides capabilities that may be useful
to scanner plug-in programmers. The dfxml module defines and implements the Digital Foren-
sics XML (DFXML) language, enabling the exchange of structured forensic information for
bulk_extractor. Both the bel3_api and the dfxml modules are standalone git modules and can be
obtained separately using the git command. To obtain the bel3_api module, run the following
command from the directory where you want to install it:

B git clone --recursive https://github.com/simsong/bel3_api.git

To obtain the dfxml module, run the following command from the directory where you want to
install it:

B git clone --recursive https://github.com/simsong/dfxml.git

It is not necessary to install these modules separately if you have already installed the bulk_extractor
code. Both of these modules are downloaded as part of the bulk_extractor code installation
described earlier in this manual.

The following sections describe the capabilities and relevant implementation details found in
bel3_api, dfxml and the histogram.h file. Specific implementation and usage information
details can be found in the directories and .h files referenced below.

4.1 bel3_api Module

The bel3_api module is the API for bulk_extractor version 1.3 and 1.4. The API was introduced
with bulk_extractor version 1.3. bulk_extractor modules must be recompiled for each version of
the program but no source code changes should be required. The most important and relevant
information in the module for scanner plug-in programmers is that which describes sbufs, feature
recorders and the plug-in system APIL.

4.1.1 Sbufs

Sbufs ("safer buffer") provide a typesafe means to refer to binary data with the context of
bulk_extractor. As previously stated, all data that bulk_extractor processes is divided into sbufs.
Those sbufs are then processed by all enabled scanners. The sbuf processed by a scanner may
originate from a disk, a disk image or be the result of decompressing or otherwise decoding other
data (note: recursive scanners that decompress or decode data will produce sbufs that will then
be processed by other scanners). For the complete listing of sbuf data and functions, see sbuf.h
in the bel3_api directory.

Sbuf Data
Sbufs are a block of memory that hold the data, the margin and the forensic path of the first byte
(pos0) of a piece of data. Specifically, the most relevant public member variables are:

e bufsize - (size_t) the size of the buffer

e pagedata - (size_t) page data (margin size is not explicitly stored because it is equal to
bufsize - pagesize)

e pos0 - (posO_t) the path of the first byte

10

pos0

The pos0 variable is not simply the "start of the buffer." It refers more generally to the address
of the first byte because the sbuf could be the result of a transformation (decompression or
decoding).The pos0 actually holds a string to the base path and the offset into that path. In that
case, the sbuf can include string associated with decompressors and ordinals associated with
offsets. For example, 1000-GZIP-300-BASE64-30 means go 1000 bytes into the stream, unzip,
g0 300 bytes into the decompressed stream, un-BASE64, and go 30 bytes into that. This is not
always the case. Simpler sbufs will use pos0 to hold the address of the start of the buffer, but the
capability for a more complex representation is available and often used. The posO class is also
defined in sbuf.h.

pos0 functions useful to scanner plug-in programmers include:
e bool isRecursive() - a function to determine if it’s recursive
e pos0_t shift() (int64_t s) - function to return a new position that’s been shifted by an offset

o std::string firstPart() function to return the first part of the posO0, std.:string lastAddedPart()
function to return the last added part of the pos0, and std::string alphaPart() function to
return the non-numeric part of the pos0

e Comparison operations that compare two pos0’s including >, < and ==

Important Sbuf Properties and Functions

There are several ways to allocate an sbuf including mapping from a file, setting from a block
of memory and creating a subset of an existing sbuf. The sbuf ¢ class remembers how the sbuf
was allocated and automatically frees whatever resources are needed when it is freed. Scanner
plug-in programmers must be careful when deleting sbuf structures. They must be deleted in
First-in, Last-out order or memory can be corrupted. For example, if you create an sbuf from a
mapped file, you must first delete the sbuf before unmapping the file or the subset sbuf will point
to unallocated memory.

Table 1 describes the most important sbuf functions that can be utilized by scanner plug-in
programmers as needed. Also refer to sbuf.h for all of the sbuf member variable and function
information.

4.1.2 Feature Recorders

Feature recorders are used to record the features found by bulk_extractor scanners and to per-
form the histogram calculation. There is one feature_recorder pointer per feature file. Feature
recorders will automatically also check the global alert_list to see if the feature should be written
to the alert file. They also work with the global stop_list, finding features that are not written to
any specific feature file but are written to a stop_list instead.

Each scanner will use one or more feature recorders to write the features that if finds to
feature files. Scanner plug-in programmers will only use the virtual functions defined in
feature_recorder.h. The virtual functions are all thread safe. Plug-in programmers can set
feature recorder flags including flags that disable the recorder, refrain from writing the feature’s
context, ignore the stoplist, ignore the alertlist, disable quoting of non-UTFS8 characters in feature
files, and send UTF-8 XML.

11

Table 1: Sbuf Functions

Function Grouping

Functions Available

Creating an Sbuf

Create from a parent (with the same or different path)

Allocate with a position but no data (used when an
sbuf needs to be passed but has no data)

Allocate from an existing buffer (optionally freeing
that buffer)

Allocate from an existing sbuf where the allocated
sbuf MUST be freed before the source because no
copy is actually made

Use + operator on sbuf + i bytes, returns a new sbuf
that is i bytes into the original sbuf. New sbuf is
a child. If parent gets deleted then child points to
invalid memory

Allocate an sbuf from a file mapped into memory
static sbuf_t *map_file(...)

Parent-Child Information

Get the parent of the parent (const sbuf t *highest-
parent() const)

Add (void add_child(const sbuf t & child) const) and
delete (void del_child(const sbuf t &child) const))
children

Helper Functions &
Public Variables

Deleting sbuf - keep track of whether or not to un-
map (bool should_unmap) or free the buffer (bool
should_free) and close the fd (bool should_close)
when the sbuf is deleted

Find offset of a byte (size_t offset(const uint8_t *loc))

Return the sbuf as a String (std::string asString())

Integer & String Type Ops

memecmp search functions at a particular location (int
memcmp(const uint8_t *cbuf,size_t at,size_t len))

Return various signed (ex. - int64_t get64i(size_t i)
const) or unsigned (ex. - uint8_t get8u(size_t i) const)
integer value for the offset of i in Intel (little-Endian)
byte order

Return signed (ex. - int32_t get32iBE(size_t i) const)
or unsigned (ex. - uintl6_t getl6uBE(size_t i) const)
integer value for the offset of i in Motorola (big-
Endian byte order)

Functions to get signed (ex. -intl6_t getl6i(size_t
i,byte_order_t bo) const) and unsigned (ex. - uint8_t
get8u(size_t i,byte_order_t bo) const) integers and
specify the byte order as input

String readers (void getUTF8WithQuoting(...))

[] operator to return what is at index [i]

Find the next occurence of a character or char* in the
buffer starting at a given point (ssize_t find(uint8_t
ch, size_t start) const)

Make a substring (std::string substr(...))

12

To write to the feature recorder system, the programmer can call any of the following fea-
ture_recorder virtual methods:

printf (const char xfmt_, ...) _attribute_((format (printf, 2, 3)));

write (const posO_t & posO,

const string & feature, const string & context);
write_buf (const sbuf_t & sbuf, size_t pos, size_t len);

printf() prints to the feature file with no specified format. This function can be used for adding
comments to the feature file. write() writes the location of a feature, the feature, and its context
(the feature may be in the context but it does not need to be). write_buf{) writes a feature located
at a given place within an sbuf and the context is written automatically. write_buf{) provides
programmers with the easiest way to write to the feature file. It automatically writes everything,
escaping bytes as necessary.

Feature recorders also provide support for carving (including encoded JPEG carving). Specifi-
cally, the feature recorder stores a set of strings, called carved_set. This is a set of hex hash values
of objects that have been carved. There is also a file number and file extension. The int64_t
file_number starts at zero and gets incremented by the carve function. The string file_extension
includes °.” and must be set by the caller. The carve function (virtual void carve(const sbuf t
&sbuf,size_t pos,size_t len,const struct bel3::hash_def &hasher) writes the filename to the
feature file where the context is the file’s hash using the provided hash function. Carving auto-

matically de-duplicates.

Histograms

Histograms are automatically created by feature recorders. Scanner plug-in programmers need
only indicate the name of the histograms (histogram_defs) created by their scanner. Histogram
names typically correspond to the root name of the feature file. They will be grouped in those
files accordingly. For example, if the scanner plug-in finds email addresses, the programmer
would indicate "email" as one of the types of features found by the scanner. As the scanner
finds email addresses, those features will be recorded and grouped according to the indicated
histogram type ("email"). The histograms that are created can be used to examine the output of
bulk_extractor runs. They demonstrate the frequency of a given feature as it was found in the
data and are grouped by data type.

4.1.3 Plug-in API

The complete plug-in API is specified in the file bulk_extractor_i.h found in the bel3_api
directory. It is the only file that must be included in all plug-in source code. The plug-in is imple-
mented as a single function called with two arguments. The plug-in API describes two major
components that are important for scanners. The first is the scanner_params which provides
mechanisms to pass information to the scanner from the API and from the API to the scanner.
The second is the recursion_control_block which provides important callback information for all
recursive scanners.

Plug-ins can be linked directly into bulk_extractor and turned into shared libraries within the
bulk_extractor system. In order to do that, they should be placed in the same directory as the
other scanner executables, /src above the bel3_api directory. If they are linked in, they must be
referenced in bulk_extractor.cpp.

Scanner Params
scanner_params are used primarily to pass information from the api to the scanner. The informa-

13

tion passed through them includes the version number, the current phase (discussed later in this
section), the sbuf to be scanned and scanner_info (used to pass information from the scanner to
the API, also discussed later in this section). Table 2 describes some of the specific components
of scanner_params most relevant to scanner plug-in programmers.

Table 2: Important Scanner Params

Name Type Parameter Purpose

sp_version int version number of this structure

phase phase_t denotes the current phase of the scanner

sbuf sbuf buffer to scan - only relevant in PHASE_SCAN
fs feature_recorder feature recorder used to store results of scan
depth uint32_t depth of scan (how far down are we?)

info scanner_info scanner information sent from scanner to API

Phases - part of the scanner_params The scanner plug-in is called in phases. The five distinct
phases are defined using an enumerated type. Scanners do not have to perform actions in each
phase but scanner programmers are able to utilize those phases as required. Currently defined
phases for plug-ins are:

e PHASE_STARTUP - called in main thread when scanner loads, called for every scanner

e PHASE_INIT - called in main thread for every ENABLED scanner after all scanners are
loaded

e PHASE_THREAD_BEFORE_SCAN - called in worker thread for every ENABLED
scanner before first scan

e PHASE SCAN - called in worker thread for ever ENABLED scanner to scan an sbuf

e PHASE_SHUTDOWN - called in main thread for every ENABLED scanner when scanner
1s shutdown

There are specific actions that should be performed in each phase depending on the desired
capabilties of the scanner. Guidelines for scanner plug-in development in each phase can be
found in the Guidelines for Development section.

scanner_info - part of the scanner_params: The scanner_param variable, scanner_info,
allows the scanner to pass information about itself to the API at startup. The types of parameters
that the scanner sets include name, author, feature file and histogram information. Through the
scanner_info variable the programmer can set the parameters defined in Table 3. Of note, there
is a also a parameter get_config used to get information from the API. That is described in the
next section.

Flags are used by the scanner to signal information about themselves to the plug-in system.
Programmers can use these flags to tell the API specific things about the scanner. The flags that
can be set include:

e SCANNER_DISABLED - scanners are enabled by default unless this is set
e SCANNER_NO_USAGE - indicates the scanner will not show up in the usage statement

(can be used to make a scanner "hidden" from bulk_extractor users)

14

Table 3: scanner_info Information to Set

Name Type Parameter Definition

si_version int version number for this structure

name string scanner name

author string author of the scanner

description string description of what the scanner does

url string where the scanner came from

scanner_version string version of this scanner

flags uint64_t flags

feature_names set<string> features this scanner needs - used to create
feature files

histogram_defs histograms_t histogram definition information - used to run
regex on a feature file and automatically create
a histogram

e SCANNER_NO_ALL - indicates the scanner won’t be automatically enabled when users
"enable all" - it must be explicitly declared enabled to run

e SCANNER_FIND_ SCANNER - indicates the scanner will use the find list
e SCANNER_RECURSE - indicates the scanner will recurse

e SCANNER_RECURSE_EXPAND - indicates the recursive scanner will expand the data
(such as a zip scanner that unzips the data)

e SCANNER_WANTS_NGRAMS - indicates this scanner wants constant data (the types of
data on disks filled with null or repeating "blank" text such as ABABAB, etc) - without
this flag set, scanners will not be called for sbufs containing just repeating ngrams

e SCANNER_FAST_FIND - indicates this scanner is self designating as a scanner that
implements -f but is declaring itself faster than other find scanners

scanner_config - part of the scanner_info: The scanner_config, part of the scanner_info vari-
able, is used by the plug-in programmer to get information from the API about or useful to the
scanner. It includes the name vals array and access to the global debug variable (programmers
don’t have to extern it). It also includes the hash_def. A lot of scanners need to compute
cryptographic hashes. The hash_def variable allows the bulk_extractor user to specify which
hash algorithm will be used by the scanner. For example, some users might prefer shal hashing
over MDS5. The hash_def defines a name and callback function to indicate a specific hashing
function. In the scanner_config, the hashing function is simply passed into the scanner via
the hash_def. The programmer does not need to know which function will be performing the
hashing, only that it should use the hash_def reference.

Recursion Control Block

The other aspect of the bel3_api relevant to scanner plug-in programmers building recursive
scanners is the recursion_control_block. While it is only relevant for recursive scanners, the
parameter is passed in to all scanners as one of the two input parameters (along with scan-
ner_params). Recursive scanners should be thread safe and exception safe. Scanners do not
need to test and return after calling the recursion_control_block, it will simply throw an excep-
tion when it finishes its work. The recursion control information includes the public variables
indicated in Table 4.

15

Table 4: Recursion Control Block Parameters

Name Type Parameter Purpose

callback_ process_t the function to call back

partName_ string the part of the forensic path processed by this
scanner

An example of a recursive scanner plug-in can be found later in this document in Section 5.4.2 .
It illustrates the usage of the recursion_control_block variables.

4.2 DFXML

Digital Forensics XML (DFXML) is an XML language designed to represent a wide range of
forensic information and forensic processing results. It allows the sharing of structured informa-
tion between independent tools and organizations. bulk_extractor can both emit and consume
DFXML [3]. The DFXML module in bulk_extractor includes capabilities to describe common
forensic processes (specifically, cryptographic hashes for md5, shal, and sha256), forensic work
products (such as the location of files on a hard drive) and metadata (such as filenames and
timestamps). While the bulk_extractor program uses DFXML as an important part of the input
and output processes, including some python scripts, it is not heavily used within the scanners.
As previously mentioned in this document, report . xml is generated by bulk_extractor using
DFXML and captures infomration about the provenance of the bulk_extractor run.

S Writing a Scanner Plug-in

5.1 Creating a Plug-in Shared Library

bulk_extractor scanner plug-ins are implemented as shared libraries that begin with the name
"scan_". For example, the demo plug-in that counts the number of blank sectors and prints a
report of the percentage of the disk that is blank is called scan_blank.so on Linux and Mac and
scan_blank.DLL on Windows.

When bulk_extractor begins, it examines the plug-ins directory for all of the shared libraries
whose name begins "scan_". Each one is loaded into the address space. bulk_extractor scanner
plug-ins are written in C++ but are called with C linkage to avoid name mangling issues. The
plug-in interface is a single C++ function with the same name as the shared library. For example,
for a scanner plug-in named scan_sample:

extern "C"

void scan_sample (const class scanner_params &sp,
const class recursion_control_block &rcb);

The plug-in takes two arguments, both of which are references to C++ objects. The first param-
eter (scanner_params) provides the general parameters required by the scanner and provides
a mechanism for sending the scanner parameters that pertain to the sbuf to be scanned. The
second scanner function parameter (recursion_control_block) is the recursion control block,
which provides information for use by recursive scanners (e.g. scanners that perform some kind
of transformation on the data and then request re-analysis). It keeps track of the callback function
and the forensic path processed by the scanner.

16

The file bulk_extractor_i.h contains the bulk_extractor plug-in interface. It is the only
file that is required by the bulk_extractor system for plug-ins. By design this file contains the
minimum necessary for a functional plug-in. This approach minimizes possible interactions
between the bulk_extractor system and the plug-in system.

5.2 Packaging

The scanner should ideally consist of a single .cpp file called scan_xyz.cpp where xyz is some
description of the type of features extracted by the scanner). There really is no need for a .h file.
If the scanner will be linked in to bulk_extractor then the scanner name must be put at the end of
the bulk_extractor.h file.

If there is a need for unicode support, then the scanner should include should #include "utf8.h"
to use the excellent GNU UTF-8 support package.

5.3 Guidelines for Development

There are guidelines that can assist the scanner plug-in developer to create safe and efficient
code for all of the scanner’s phases. The startup, init and shutdown phases are run from the main
thread while the thread-before-scan and scan phases are run in multiple threads simultaneously.
The multi-threaded bulk_extractor architecture allows programmers to write code that executes
in a multi-threaded environment with little effort. Programmers do not need mutexes, spin-locks,
pthreads, synchronization elements, or any other traditional threading mechanisms in their code
for the multi-threaded phases. Instead, bulk handles this as part of the workload dispatch system.

Programmers must be vigilant that code is running in a multi-threaded environment. Plug-ins
MUST BE THREAD SAFE. This can not be emphasized enough. Multiple copies of the code
may be running at the same time and accessing the same global variables. Many programming
practices that are acceptable in a single-threaded environment will generate unexpected crashes
in a multi-threaded environment. The good news is that these are generally not very good
programming practices, so they shouldn’t be used anyway.

For more information on debugging bulk_extractor scanners, refer to the documentation created
by Simson Garfinkel titled be_crash_diagnostics. It can be found in the github repository
at the following url: https://github.com/simsong/bulk_extractor/blob/master/

doc/Diagnostics_Notes/be_crash_diagnostics

In general, here is what happens from a threading perspective when the scanner runs and a few
simple rules to follow for each of the phases.

5.3.1 PHASE_STARTUP

The scanner will be called in the startup phase only once. The scanner is called from the main
thread for all scanners when the scanner loads (whether or not the scanner is ENABLED). This
phase should be used to load the scanner, get/set metadata and quit. This is, in particular, because
disabled scanners will go through this phase and there is no reason to perform any kind of
expensive operations on disabled scanners. scanner_params can be used to access any required
scanner_info and configuration information that is useful for all (enabled or disabled) scanners.

17

https://github.com/simsong/bulk_extractor/blob/master/doc/Diagnostics_Notes/be_crash_diagnostics
https://github.com/simsong/bulk_extractor/blob/master/doc/Diagnostics_Notes/be_crash_diagnostics

5.3.2 PHASE_INIT

During this phase the enabled scanner should initialize any global variables that it needs to
access. These variables should be static so that there is no possibility that they will impact other
scanners. Because this is only called from main thread for enabled scanners, this phase can be
used to perform more expensive operations that need to be performed.

5.3.3 PHASE_THREAD_BEFORE_SCAN

If an enabled scanner requires thread local storage, the thread specific initialization should be
done here. For example, if the scanner needed a socket to a program that isn’t multi-threaded
(such as a python bridge), this operation would be performed for every thread in this phase.

5.3.4 PHASE_SCAN

The enabled scanner will be called in the scan phase for every page that is processed. The scanner
may also be called by multiple threads simultaneously. The chance that multiple threads will be
in the scanner simultaneously increasingly linearly with the amount of CPU load that the scanner
creates, for the simple reason that the scanner is consuming a larger fraction of all the scanner
time.

Scanners can be tested by running them as the only scanner. To do this, use the -E scanner
option, which enables scanner and disables all of the others. The scanner will be called a LOT.
For processing a 1TB drive image, the scanner will be called at least w =59,604
times. The scanner will also be called every time bulk_extractor recursively i)roéesses a block of
data. In a typical run against a 1TB drive image, assume that the scanner will be called at least

500,000 times on data segments ranging from 16MiB to 4096 bytes in size.

Each time the scanner is called in the scan phase, it will process one sbuf (accessed through
the scanner_params sp variable). The scanner should process that sbuf and, in general, keep
all of its per-thread state on the stack. Any global variable that the scanner accesses should
only be accessed with const pointers. This cannot be stressed enough. More on the specifics of
programming with const pointers can be found in the Style Guide section of this document.

All items that the scanner saves should be saved using the bulk_extractor feature recorder system.
All of the exposed virtual methods methods are guaranteed to be thread-safe.

If for some reason the scanner requires access to a global variable, use __sync_fetch_and_add().
For example, the following function increments counter by 1 and executes the function bar if the
value of _sync_fetch_and_add() is equal to 10:

if (__sync_fetch_and_add(&counter,1)==10) {

bar () ;
}

If you want to test the value of counter without incrementing it, use this:

if(__sync_fetch_and_add(&counter, 0)==10) {
bar () ;
}

The programmer must remember that once a global variable is modified in a multi-threaded
environment, you may only access that variable using thread-aware code. That is because the
thread-aware code will use the correct barriers, mutexes or locks necessary on the system’s

18

architecture to get a current copy of the global variable. This is especially important on systems
with multiple processes and multiple caches. __sync_fetch_and_add() is a GCC built-in. A full
memory barrier is created when this function is invoked.

For complex data types, there may be instances where corrupt features are found when some,
but not all, of the feature is valid. In that case, the scanner should be designed to accept data
until an invalid size or offset is encountered, at which point what is accumulated so far is reported.

In the case of the Exchangeable Image File Format (EXIF), for example, it is hard to get a false
positive. First, the 4-byte EXIF magic number is found. After that the the 4-byte Endian and
magic number signature must be present. Then the scanner must search through valid 2-byte
application markers until the APP1 jpeg marker is found. Finally, the 6-byte Tiff signature must
be present ("Exif\0O\0"). When this signature is found, the scanner accepts the feature. As with
any feature, it is possible for some of the information to be corrupted because it is part of an
overwritten sector. The data format is so unique and specific that it is also hard to believe that
most, but not all, of the information would appear and not be part of a reportable feature/finding.
In the case of EXIF, if the dimensions are not believable but most of the feature is valid, the
feature information that has been accumulated to that point is reported. Programmers should
consider employing similar standards of acceptance for reasonably complex features.

5.3.5 PHASE_SHUTDOWN

Only one instance of the enabled scanner will run in the main thread in PHASE_SHUTDOWN.
This phase does not run until all scanners have terminated. Thus, global variables can be modified
without the need to lock them. However, any variable that was modified in one of the threads
must still be accessed using synchronization primitives because of cache coherency issues.[4]

5.4 Scanner Examples

The best way to illustrate the guidelines and process for development is through examples. In the
following sections, we walk through two relatively simple examples, scan_ASCII and scan_xor.
For further examples, interested programmers can look at the scanners (files labeled scan_)
located in the bulk_extractor code in the \src and \src\plug-ins directories. Programmers should
keep in mind that scanners not part of the \directory may include more bulk_extractor system
dependencies than are intended with the plug-in system.

5.4.1 Scan ASCII Example

The ASCII scanner is a simplistic plug-in scanner created to illustrate the concepts of the plug-in
API to new developers. It is not the proper way to implement string search in bulk_extractor.
It is only intended to be used to demonstrate the process for creating a plug-in. The scanner is
called scan_asciisequence. It is wholey contained in the file scan_asciisequence.cpp and
is located in and compiled from the plug-ins directory. This section outlines specific aspects of
this scanner that are of note, however, the complete .cpp file can be found in the Appendix.

The .cpp file essentially consists of one function. It is defined as follows:

extern "C"
void DLL_EXPORT scan_asciisequence (
const class scanner_params & sp,
const recursion_control_block & rcb){ ...

19

The ASCII scanner does not use the recursion control block input parameter as it is not a recursive
scanner. It does, however, rely heavily on the scanner_params sp input to get and set important
system information including the feature and histogram recorders.

There is one variable defined in the scanner plug-in file. It is declared static as required for
this multi-threaded application. It is modified in the startup phase and then only accessed in
subsequent phases.

To run this scanner, bulk_extractor users should use the option -s ASClIsequence=MYSEQUENCE,
where MYSEQUENCE is the user input ASCII string for which the scanner is searching. It is
not typical for a scanner plug-in to require specific user input but can be done if the programmer
wishes to do so.

The first thing the scan function does is to assert that the scanner is running with the most
up-to-date version of the scanner parameters:

assert (sp.sp_version==scanner_params: :CURRENT_SP_VERSION)

During the startup phase (PHASE_STARTUP), the scanner uses sp.info to set information about
this scanner. This includes defining a new feature file type ("asciisequence") and defining the
histogram information. The following code sets the information in the startup phase:
sp.info->name = "asciisequence"

sp.info->author = "Jessica Bradley"

sp.info->flags = 0;

//add a feature file to store the results

sp.info->feature_names.insert ("asciisequence") ;

//add a histogram to keep track of instances

sp.info->histogram_defs.insert ("asciisequence", "", "histogram"));

After this information is set in the startup phase, the function gets and sets the ASCII text input
parameter that the scanner will search for in the scan phase. The bulk_extractor input is extracted
using the sp.info variable. The code is as follows:

if (... && sp.info->config.find("asciisequence") !=

sp.info->config.end())

The function then returns from the startup phase.

The other phase implemented by this scanner is the scan phase (PHASE_SCAN). In the scan
phase, the ASCII scanner searches sbufs for the ASCII sequence specified by the user and writes
instances of that sequence to the feature file. This section of the code will be called by multiple
threads simultaneously, and therefore thread safe and efficient coding are employed throughout
this section of code.

In the scan phase, the scanner first gets the feature_recorder pointer that will be used to record
results:

feature_recorder xasciisequence_recorder = sp.fs.get_name ("asciisequence");
In the next section of the scan phase, the ASCII scanner searches ASCII text for the ascii

sequence in the sbuf, searching through the buffer from beginning to end. The scanner loops
through each character in the sbuf with the follow for loop:

for (size_t i=0; i < sp.sbuf.bufsize; i++){...

The scanner then compares each character, looking for the ASCII sequence. If the sequence is
found, the scanner writes the findings to the feature file with the following code (where pos is
the offset of the feature into the buffer and len is the size of the feature):

20

asciisequence_recorder->write_buf (sp.sbuf, pos, len);

The ASCII scanner also scans in UTF16 text to search. The range of ASCII characters in
UTF16-word is 0x0020-0x007F and UTF16 encoding may be little-endian or big-endian. So
every odd (or even) byte of the text should be zero. Other than treating the UTF16 differently for
those reasons, the search for the ASCII sequence follows the same steps. The scanner writes the
found instances to the feature file after converting the UTF16 words to ASCII.

The final step with the ASCII scanner is to check for the other phases that are not implemented
and return. This is not explicitly required as the function will return regardless. The check is
defined in this plug-in for the purposes of reminding programmers using this as a guide that
certain phases are not implemented in this scanner but can be implemented in other scanner
plug-ins.

5.4.2 XOR Scanner Example

The XOR scanner was created to optimistically search for features trivially obfuscated with XOR
encryption. XOR is a technique for obfuscating data often used to conceal sensitive data and code
within malicious files and programs. The scanner is not technically a plug-in. It is distributed as
a bulk_extractor scanner as of v.1.4 and can be found in the /src directory of the development
tree. The XOR scanner is provided here as a relatively simple example of a recursive scanner.

The XOR scanner does not write to a feature file or create histograms. It finds XOR obfuscated
data, deobfuscates the data and creates child sbufs. The XOR scanner then calls the other
scanners on the child sbufs it has created. This section outlines specific aspects of the this scanner
of note, however, the complete .ccp file can be found in the Appendix.

The .cpp file consists of one function. It is defined as follows:

extern "C"
void DLL_EXPORT scan_xor (const class scanner_params & sp,
const recursion_ _control_block &rcb) { ...

The XOR scanner utilizes both the scanner params and recursion control block parameter. It also

declares one variable outside of the scanner function. That variable is declared static and stores
the XOR mask.

The first thing the scanner does is to assert that the scanner is running with the most up-to-date
version of the scanner parameters:

assert (sp.sp_version==scanner_params: :CURRENT_SP_VERSION)

During the startup phase (PHASE_STARTUP), the scanner uses sp.info to set information
about itself. This includes setting two flags. The first flag, SCANNER_DISABLED, tells
bulk_extractor that this scanner will be disabled unless it is specifically enabled by the user as
part of the command line arguments. The second flag, SCANNER_RECURSE, indicates that

this scanner is a recursive scanner that will recurse and generate new sbufs. The XOR scanner
also uses the get_config from sp.info to get the XOR mask from the API.

assert (sp.info->si_version==scanner_info: :CURRENT_SI_VERSION) ;

sp.info->name = "xor";
sp.info->author = "Michael Shick";
sp.info->description = "optimistic XOR deobfuscator";

sp.info->flags = scanner_info::SCANNER_DISABLED | scanner_info::
SCANNER_RECURSE;
sp.info->get_config("xor_mask", &xor_mask, "XOR mask string, in decimal");

21

In the PHASE_SCAN, the XOR scanner gets the sbuf and pos0 for that sbuf and loads them into
const variable so that they can be used in the recursion to create new child sbufs.

const sbuf_t &sbuf = sp.sbuf;
const posO_t &posO = sp.sbuf.pos0;

The scanner then checks to see if the sbuf has already been XOR’d and refused to operate on it if
it has, to avoid infinite recursion.

// dodge infinite recursion by refusing to operate on an XOR’d buffer

if (rcb.partName == pos0.lastAddedPart ()) {

return;

}

The scanner then uses managed_malloc to allocate a new uint8_t that is the same size as the
sbuf. The managed malloc prototpe (found in sbuf .h) is similiar to using new except that the
object is automatically freed when the object is dropped, which is extremely useful in recursive
functions that need to clean up child buffers.

managed_malloc<uint8_t>dbuf (sbuf.bufsize);

Next, the scanner applies the XOR mask to the sbuf and stores the results in the newly created
buffer.

// 0x00 is 8-bit xor identity

if (xor_mask != 0x00) {
for(size_t ii = 0; 1ii < sbuf.bufsize; ii++) {
dbuf.buf[ii] = sbuf.bufl[ii] "~ xor_mask;

}
}

After the XOR’d sbuf has been deobfuscated, a new child sbuf is created from the resulting
data. The new sbuf will be sent to the API via a newly created scanner_params object (called
child_params).

const posO_t posO_xor = posO + rcb.partName;

const sbuf_t child_sbuf (posO_xor, dbuf.buf, sbuf.bufsize, sbuf.pagesize,

false);
scanner_params child_params (sp, child_sbuf);

Finally, the scanner calls the other scanners on the newly created child sbuf using parameters
from the recursion_control_block variable rcb.

(*rcb.callback) (child_params) ;

if (rcb.returnAfterFound) {

return;
}

The XOR scanner does not implement any of the other phases defined in bulk_extractor. All of
the work done by the scanner (of creating newly deobfuscated buffers) is performed in the scan
phase.

6 Style Guide

Disciplined programmers adhere strictly to coding standards and style conventions. bulk_extractor
programmers have adopted several important principles for C++ development that ensure the
code is readable, reusable, testable and maintainable. Those conventions are evident throughout
the source code. While plug-in development does not strictly require specific integration with the
bulk_extractor system, it is in the best interest of plug-in programmers to adhere to the guidelines
that have been developed through experience and expertise. Many of the coding standards and

22

style conventions also serve to ensure the code remains thread safe and efficient. All standards
are based on compromise. These standards seem to be a good compromise between a variety of
coding styles and existing standards.

6.1 General Formatting Rules

There should be no tabs in source code - legacy code has tabs at 8 characters; they can be freely
converted to spaces as necessary.

Indent at 4 spaces.

Open braces start on the SAME LINE for:

- if statements

- inline functions in .h headers

- Java function declarations (not relevant for plug-ins)

Open braces start on NEXT LINE for C function declarations.

Programmers can use the following lines and configuration variables to try to enforce the above
rules.

e The first can be used for EMACS at the top of C programs: /* -*- mode: C++; c-basic-
offset: 4; indent-tabs-mode: nil -*- */

e Also, in .emacs files, the following two lines will assist in enforcing the rules:
(setg-default indent-tabs-mode nil)
(setq c-basic-offset 4)

These guidelines are also published in the bulk_extractor source code in the file (found in the
bel3_api module) named CODING_STANDARDS. txt[2].

6.2 Multi-threaded Style Guidelines

There are several more important programming rules that should be followed in the multi-
threaded phases to keep the scanner plug-in thread safe. These include a list of things not to do
such as the following:

e The scanner should not make a copy of a complex global data structure for use in any
multi-threaded phase. The overhead of making the copy will slow down the scanner.
Instead, access the data structure read-only, and keep whatever local state needed on the
stack. Although this may require redesigning third-party code, in general such changes
are only necessary on third-party code that is poorly designed.

e Library calls that are not thread safe should not be used. For example, localtime()
should not be used because it uses global state that is kept in the C library. Instead
uselocaltime_r().

e A so-called Giant Lock should not be created for use in the scanner. A “Giant Lock™ is a
single lock that is used to protect a piece of code that is hopelessly not thread safe. It is
a solitary global lock that is held whenever a thread enters kernel space and is released
when the thread returns to user space. With a Giant Lock, threads in user space can run

23

concurrently on any available processors or processor cores but no more than one thread
can acquire the lock at a time. The Giant Lock eliminates all concurrency within the code
protected by a lock. Usually this is CPU intensive code.

The Unix kernel used to have a single Giant Lock because the kernel was developed for a
single-processor system and the programmers assumed that only a single thread would be
running when the processor was in the kernel and interrupts were turned off. When Unix
was put on multi-processor machines the Giant Lock prevented more than one processor
from entering the kernel at a time. Although this prevented the system from crashing, it im-
posed unacceptable performance penalties, because it turned a multi-processor system into
a uni-processor whenever more than one processor tried to enter the kernel at the same time.

If a Giant Lock is created and used within a scanner, then only one copy of the scanner
will run at a time. This is especially a problem if the scanner is CPU-intensive: it will kill
the overall performance of bulk_extractor and users will respond by disabling the scanner
plug-in that has been created. Users will not be able to make the scanner run faster by
running it on faster hardware[4] .

There are several rules related to const correctness and const pointers that will ensure the code is
thread safe. In general, const correctness is using the keyword const to prevent const objects
from getting mutated. Declaring a parameter as const is another form of type safety. It ensures
that none of the mutative functions of the object are available. It is almost the same as declaring
a different class of object. Const pointers are a way to define a pointer that can not be used
to change the object it points to, only to access it. Through const pointers, programmers can
only access and use const member variables or functions. Of note, pointer declarations are
read right-to-left and mean different things depending on where the pointer is located. Table 5
explains the different meanings that placement of the pointer imply.

Table 5: Const Correctness & Pointer Placement

Pointer Code Declaration Meaning

std::string const* abc "abc points to a constant string." The string
object can’t be changed via abc.

std::string® const abc "abc is a const pointer to Fred." The pointer

abc can’t be changed but the string can be
changed via abc.

std::string const* const p "abc is a constant pointer to a constant string."
The pointer abc can’t be changed nor can the
string be changed via abc.

Const correctness is important to protect the thread safety of the code. Const pointers should
be used properly throughout the scanner plug-in code to ensure that global parameters are not
being unnecessarily changed while other threads are accessing the same data[1]. Because C++
provides the mutable keyword and const cast, const does not guarantee thread safety. It does,
however, provide a reliable means for savvy programmers to avoid inadvertent thread safety
issues. The ways around the thread safety const provides are purposeful and intentional and
should not be used.

24

References

[1] CLINE, M. Faq const-correctness. Website:http://www.parashift.com/c++-faq/
const-correctness.html, 2013. [Online; accessed May 2013].

[2] GARFINKEL, S. Coding standards for bulk_extractor. Website:https://github.com/
simsong/bel3_api/blob/master/CODING_STANDARDS.txt, December 2012.

[3] GARFINKEL, S. Digital forensics xml and the dfxml toolset. Digital Investigation 8
(February 2012), 161-174.

[4] GARFINKEL, S. Programmer documentation. Website:https://github.com/
simsong/bulk_extractor/blob/master/doc/user_misc/programmer.tex, De-

cember 2012.

[5] GARFINKEL, S. Readme file for bulk_extractor _extractor. Website:https://github.
com/simsong/bulk_extractor/readme.txt, June 2013.

25

http://www.parashift.com/c++-faq/const-correctness.html
http://www.parashift.com/c++-faq/const-correctness.html
https://github.com/simsong/be13_api/blob/master/CODING_STANDARDS.txt
https://github.com/simsong/be13_api/blob/master/CODING_STANDARDS.txt
https://github.com/simsong/bulk_extractor/blob/master/doc/user_misc/programmer.tex
https://github.com/simsong/bulk_extractor/blob/master/doc/user_misc/programmer.tex
https://github.com/simsong/bulk_extractor/readme.txt
https://github.com/simsong/bulk_extractor/readme.txt

Appendices

A ASCII Scanner Plug-in Example Code

The complete .cpp file of scan_ASCIIsequence.cpp described in Section 5.4.1 of this
document follows.

/% %

scan_asciisequence:

demonstration that shows how to write a simple plug—in scanner.

¥ O X X X X ¥

This scanner allows the user to search specific sequence of ASCII
characters

and generates a feature report for every instance of specific sequence.

* %

*/

#include "beconfig.h"
#include "bulk_extractor_i.h"

#include <iostream >
#include <sys/types.h>

#if defined (WIN32) || defined (_WIN32) Il defined (WIN64) Il defined (_WIN64)
#define DLL EXPORT __declspec(dllexport)

#else

#define DLL_EXPORT

#endif

// ASCIl sequence to found.
static char ascii_sequence[1024] = "";

// The plugin interface is a single C++ function with the same name as

// the shared library. The plugin must be compiled with C linkage, rather

// than C++ linkage, to avoid name mangling issues.

extern "C"

void DLL_EXPORT scan_asciisequence (const class scanner_params &sp,const

recursion_control_block &rcb)

{
// Check version of bulk_extractor
assert(sp.sp_version==scanner_params :: CURRENT_SP_VERSION) ;

// Check for phase 0 —— startup
if (sp.phase==scanner_params :: PHASE_STARTUP) {
// fill plugin information
sp . info —>name = "asciisequence";
sp.info—>author = "Jessica_Bradley";
sp.info—>description =
"Searches_for_a_specific_set_of ASCII"
" _characters_(passed_in_as_a_parameter)";
sp.info—>flags = 0;

// get ascii_sequence from bulk_extractor parameters
// which passed by key:
// —s asciisequence=MYSEQUENCE
if (ascii_sequence[0] == 0 &% sp.info—>config.find("asciisequence")
!= sp.info—>config.end()) {
// Copy parameter to ascii_sequence.

26

// ascii_sequence initially filled with zeros
// so in this case we dont need to add tailing zero.
strncpy (ascii_sequence ,
sp.info—>config["asciisequence"].c_str(),
sizeof (ascii_sequence) — 1);

// lower case for case insensitive comparison
for (char *c = ascii_sequence; *c != 0; c++)
xc = tolower(xc);

// add feature—file

sp.info —>feature_names.insert("asciisequence");

// add histogram to look count of instances

sp.info—>histogram_defs.insert (histogram_def("asciisequence", ""
"histogram"));

s

// Show warning about empty ascii_sequence
if (ascii_sequence[0] == 0) {
std ::cerr << "parameter_’asciisequence’_was_not_set\n"
<< "plugin_scan_asciisequence_will_not_
search_anything\n"
<< "use_key: —s_,
asciisequence=MYSEQUENCE\n" ;

return;

}

// Check for phase 2 —— shutdown
if (sp.phase==scanner_params ::PHASE SHUTDOWN) return;

// Check for phase 1 —— scan

if (sp.phase==scanner_params :: PHASE_SCAN) {
// Do nothing if nothing to search
if (ascii_sequence[0] == 0) return;

// Get feature recorder to store info about found instances
feature_recorder xasciisequence_recorder =
sp.fs.get_name("asciisequence");

const char xsequence_pos = ascii_sequence;

// Scan in ASCII text
for(size_t i=0; i < sp.sbuf.bufsize; i++){
// Compare characters
if (tolower (x(charx)sp.sbuf.buf[i]) == *sequence_pos &&
xsequence_pos != 0) {
// Characters match.
// Next comparison should be with next character in
ascii_sequence .
sequence_pos ++;
if (xsequence_pos == 0) {
// sequence found!
size_t len = sequence_pos — ascii_sequence;
size_t pos = i — sp.sbuf.buf + 1 — len;

// Write into feature file

asciisequence_recorder —>write_buf (sp.sbuf,
pos, len);

27

} else {
// Characters mismatch.

// We should to go back to character followed by
first matched character.
i —= sequence_pos — ascii_sequence;

// Next comparison should be with first character
in ascii_sequence
sequence_pos = ascii_sequence;

}

// Scan in UTFI6 text

// Range of ASCII characters in UTFIl6—word is 0x0020—-0x007F.
// Also UTFI16 encoding may be little —endian or big—endian.
// So every odd (or even) byte in text should be zero.

sequence_pos = ascii_sequence;

bool leading_zero = false;

for(size_t i=0; i < sp.sbuf.bufsize; i++) {
bool tailing_zero = i+l < sp.sbuf.bufsize && *(i+1) == 0;
if (sequence_pos == ascii_sequence)

leading_zero = i—1 >= sp.sbuf.buf && x(i—1) == 0;

if (tolower (x(charx)sp.sbuf.buf[i]) == *sequence_pos

&& *sequence_pos != 0

&& (tailing_zero |l (leading_zero && *(sequence_pos+1) ==
0)))

// Characters match.

// Jump over zero char to next char to
compare
i++;

// Next comparison should be with next
character in ascii_sequence.
sequence_pos ++;

if (xsequence_pos == 0) {
// sequence found!
size_t len = 2x(sequence_pos —

ascii_sequence);
size_t pos = i — sp.sbuf.buf + 1 — len;
if (leading_zero) pos——;

// Write into feature file
asciisequence_recorder —>write_buf (sp.sbuf,
pos, len);
}
} else {
// Characters mismatch.

// We should to go back to character followed by
first matched character.
i —= 2x*(sequence_pos — ascii_sequence);

// Next comparison should be with first character

in ascii_sequence
sequence_pos = ascii_sequence;

28

29

B XOR Scanner Example Code

The complete .cpp file of scan_xor. cpp described in Section 5.4.2 of this document follows.

/%

* scan_xor: optimistically search for features trivially obfuscated with
xor

* author: Michael Shick <mfshick@nps.edu>

x created: 2013—-03—18

*/

#include "config.h"

#include "bulk_extractor_i.h"

using namespace std;

static uint8_t xor_mask = OxFF;

extern "C"

void scan_xor(const class scanner_params &sp,const recursion_control_block
&rchb)
assert(sp.sp_version==scanner_params :: CURRENT_SP_VERSION) ;

if (sp.phase==scanner_params :: PHASE_STARTUP) {
assert(sp.info—>si_version==scanner_info :: CURRENT_SI_VERSION) ;

sp.info—>name = "xor";
sp.info—>author = "Michael_Shick";
sp.info—>description = "optimistic_XOR _ deobfuscator";

sp.info—>flags = scanner_info :: SCANNER _DISABLED |
scanner_info :: SCANNER_RECURSE;

sp.info—>get_config ("xor_mask",&xor_mask , "XOR_mask_string , _in
decimal");
return;

[

}

if (sp.phase==scanner_params ::PHASE SCAN) {
const sbuf_t &sbuf = sp.sbuf;
const posO_t &posO = sp.sbuf.posO;

// dodge infinite recursion by refusing to operate on an XOR’d
buffer

if (rcb.partName == posO.lastAddedPart()) {
return;

}

managed_malloc<uint8_t>dbuf(sbuf. bufsize);

// 0x00 is 8—bit xor identity
if (xor_mask != 0x00) {
for(size_t ii = 0; ii < sbuf.bufsize; ii++) {
dbuf.buf[ii] = sbuf.buf[ii] » xor_mask;
}
}

const posO_t posO_xor = posO + rcb.partName;

const sbuf_t child_sbuf(posO_xor, dbuf.buf, sbuf.bufsize,
sbuf.pagesize , false);

scanner_params child_params(sp, child_sbuf);

// call scanners on deobfuscated buffer

(¥rcb.callback) (child_params);
if (rcb.returnAfterFound) f{

30

return;

31

	Introduction
	Overview of bulk_extractor
	Purpose of this Manual
	Conventions Used in this Manual

	Setting up Code for Development
	How to Get the Code
	General Notes on Compiling
	Compiling for MacOS or Linux
	Compiling for Windows
	Cross-compile for Windows using Fedora
	Cross-compile for Windows using Debian Testing (wheezy) or Ubuntu 12.04 LTS (with mingw)
	Creating a Signed Windows Installer (Optional)

	Overview of Architecture
	Software System Design for Plug-ins
	be13_api Module
	Sbufs
	Feature Recorders
	Plug-in API

	DFXML

	Writing a Scanner Plug-in
	Creating a Plug-in Shared Library
	Packaging
	Guidelines for Development
	PHASE_STARTUP
	PHASE_INIT
	PHASE_THREAD_BEFORE_SCAN
	PHASE_SCAN
	PHASE_SHUTDOWN

	Scanner Examples
	Scan ASCII Example
	XOR Scanner Example

	Style Guide
	General Formatting Rules
	Multi-threaded Style Guidelines

	Appendices
	ASCII Scanner Plug-in Example Code
	XOR Scanner Example Code

